中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuropharmacology 2006-Sep

Modulation of thalamic neuron excitability by orexins.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
G Govindaiah
Charles L Cox

關鍵詞

抽象

Orexins (hypocretins) are peptides of hypothalamic origin that play an important role in maintaining wakefulness. Reduced orexin levels have been associated with an increased incidence of narcolepsy. Considering thalamic nuclei are interconnected with virtually all neocortical regions and the thalamus has been found to produce distinct activities related to different levels of arousal, we have examined the actions of orexins on thalamic neurons using an in vitro thalamic slice preparation. The orexins (orexin-A and orexin-B) produced distinct actions within different intralaminar nuclei. Orexin-B strongly depolarized the majority of centrolateral nucleus (CL) neurons (71%), but depolarized a significantly smaller population of parafascicular nuclei (Pf) neurons (10%). In the mediodorsal thalamic nucleus (MD), orexin-B depolarized 21% of the neurons tested. Overall, orexin-B was found to be more potent than Orexin-A. Orexin-A depolarized a significantly smaller population of CL neurons (23%), but had no effect on Pf neurons. In addition, orexin-A produced a small depolarization in 28% of neurons in the thalamic reticular nucleus (TRN). Both orexin-A and orexin-B had no effect on neurons in the lateral posterior (LP), lateralodorsal (LD), posterior thalamic (Po), ventrobasal (VB) nucleus and lateral geniculate nucleus (LGN). The depolarizing actions of orexins were sufficient to alter the firing mode of these neurons from a burst- to tonic-firing mode. The excitatory actions of orexin-B result from a decrease in the apparent leak potassium current (Kleak). The orexin-B mediated excitation was also attenuated by bupivacaine suggesting the involvement of Kleak current. Further, the actions of orexin-B were occluded by the classical neurotransmitter dopamine, indicating the orexins may share similar ionic mechanisms. Thus, the depolarizing actions of orexins may play a key role in altering the firing mode of thalamic neurons associated with different states of consciousness.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge