中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Urological research 1998

N-acetylneuraminic acids (nana): a potential key in renal calculogenesis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
J Hofbauer
S Fang-Kircher
G Steiner
H Wiener
M Susani
R Simak
M A Ghoneim
M Marberger

關鍵詞

抽象

N-Acetylneuraminic acids (NANA) promote binding of calcium ions to macromolecules and cells, increase the intrinsic viscosity of glycoproteins and facilitate gel formation in water. Since these properties are crucial in urinary calculogenesis, we evaluated NANA levels in urine and serum as well as their expression in kidney tissues. Using a modified thiobarbituric acid assay, the evaluation of free and bound NANA in 24-h urine samples revealed a ratio of 1.87 in 33 non-stone-formers but a reversed ratio of 0.84 in 41 recurrent calcium oxalate stone-formers. Time kinetics revealed a gradual rise in NANA expression until 48 h of culture and a significantly higher release into supernatants of papillary renal epithelial cells (REC) when compared with cortical REC. To examine NANA distribution in kidney tissues, paraffin-embedded biopsies from five normal and six stone-forming kidneys were labeled with the biotinylated NANA-specific lectins Maackia amurensis (MAA) and Sambucus nigra (SNA). Immunohistochemistry revealed intense luminal MAA reactivity of distal tubular REC and collecting ducts in 96.7% and 91.5% of normal and stone-forming kidneys respectively. By contrast, there was a marked difference between normal and stone-forming kidneys for SNA reactivity (17.7% vs 95%) at the same locations. Finally, the glycocalyx of recurrent stone-formers showed altered sialylglycoside linkages [alpha(2,6) instead of alpha(2,3)] that may indicate an altered REC function. Given the calcium-binding potential of NANA, their increased local concentration within the glycocalyx layer in the distal nephron may either initiate stone formation or facilitate attachment of microcrystals to REC.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge