中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2018-Mar

Nitrogen uptake kinetics and saltmarsh plant responses to global change.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Grace M Cott
Joshua S Caplan
Thomas J Mozdzer

關鍵詞

抽象

Coastal wetlands are important carbon sinks globally, but their ability to store carbon hinges on their nitrogen (N) supply and N uptake dynamics of dominant plant species. In terrestrial ecosystems, uptake of nitrate (NO3-) and ammonium (NH4+) through roots can strongly influence N acquisition rates and their responses to environmental factors such as rising atmospheric CO2 and eutrophication. We examined the 15N uptake kinetics of three dominant plant species in North American coastal wetlands (Spartina patens, C4 grass; Phragmites australis, C3 grass; Schoenoplectus americanus, C3 sedge) under ambient and elevated CO2 conditions. We further related our results to the productivity response of these species in two long-term field experiments. S. patens had the greatest uptake rates for NO3- and NH4+ under ambient conditions, suggesting that N uptake kinetics may underlie its strong productivity response to N in the field. Elevated CO2 increased NH4+ and NO3- uptake rates for S. patens, but had negative effects on NO3- uptake rates in P. australis and no effects on S. americanus. We suggest that N uptake kinetics may explain differences in plant community composition in coastal wetlands and that CO2-induced shifts, in combination with N proliferation, could alter ecosystem-scale productivity patterns of saltmarshes globally.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge