中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Urology 2017-Jan

Novel algorithm for management of acute epididymitis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Hiroshi Hongo
Eiji Kikuchi
Kazuhiro Matsumoto
Satoshi Yazawa
Kent Kanao
Takeo Kosaka
Ryuichi Mizuno
Akira Miyajima
Shiro Saito
Mototsugu Oya

關鍵詞

抽象

OBJECTIVE

To identify predictive factors for the severity of epididymitis and to develop an algorithm guiding decisions on how to manage patients with this disease.

METHODS

A retrospective study was carried out on 160 epididymitis patients at Keio University Hospital. We classified cases into severe and non-severe groups, and compared clinical findings at the first visit. Based on statistical analyses, we developed an algorithm for predicting severe cases. We validated the algorithm by applying it to an external cohort of 96 patients at Tokyo Medical Center. The efficacy of the algorithm was investigated by a decision curve analysis.

RESULTS

A total of 19 patients (11.9%) had severe epididymitis. Patient characteristics including older age, previous history of diabetes mellitus and fever, as well as laboratory data including a higher white blood cell count, C-reactive protein level and blood urea nitrogen level were independently associated with severity. A predictive algorithm was created with the ability to classify epididymitis cases into three risk groups. In the Keio University Hospital cohort, 100%, 23.5%, and 3.4% of cases in the high-, intermediate-, and low-risk groups, respectively, became severe. The specificity of the algorithm for predicting severe epididymitis proved to be 100% in the Keio University Hospital cohort and 98.8% in the Tokyo Medical Center cohort. The decision curve analysis also showed the high efficacy of the algorithm.

CONCLUSIONS

This algorithm might aid in decision-making for the clinical management of acute epididymitis.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge