中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2019-Apr

Optimized fabrication of newly cholesterol biosensor based on nanocellulose.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Mahnaz Abdi
Rawaida Razalli
Paridah Tahir
Naz Chaibakhsh
Maryam Hassani
Mahdi Mir

關鍵詞

抽象

A novel and sensitive electrochemical cholesterol biosensor was developed based on immobilization cholesterol oxidase (ChOx) on the polyaniline/crystalline nanocellulose/ionic liquid modified Screen-Printed Electrode (PANi/CNC/IL/SPE). A thin layer of ionic liquid (IL) was spin coated on the modified electrode to enhance the electron transferring. Crystalline nanocellulose was prepared from Semantan bamboo (Gigantochloa scortechinii) via acid hydrolysis and it was used to synthesize a nanocomposite of PANi/CNC via in situ oxidative polymerization process. FESEM and TEM images showed high porosity of the nanostructure with no phase separation, revealing the homogenous polymerization of the monomer on the surface of the crystalline cellulose. Research surface methodology (RSM) was carried out to optimize the parameters and conditions leading to maximize the performance and sensitivity of biosensors. The PANi/CNC/IL/GLU/ChOx-modified electrode showed a high sensitivity value of 35.19 μA mM/cm-2 at optimized conditions. The proposed biosensor exhibited a dynamic linear range of 1 μM to 12 mM (R2 = 0.99083) with the low Limit of Detection of 0.48 μM for cholesterol determination. An acceptable reproducibility (RSDs ≤3.76%) and repeatability (RSDs ≤3.31%) with the minimal interference from the coexisting electroactive compounds such as ascorbic acid, uric acid and glucose was observed for proposed biosensor.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge