中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1981-Nov

Oxidation of proline by mitochondria isolated from water-stressed maize shoots.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
G D Sells
D E Koeppe

關鍵詞

抽象

Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between -5 and -10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from -5 to -10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates.The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge