中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2015-Jan

Paeoniflorin attenuates allergic inflammation in asthmatic mice.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jing Sun
Jinfeng Wu
Changqing Xu
Qingli Luo
Bei Li
Jingcheng Dong

關鍵詞

抽象

Paeoniflorin (PF), one of the major active ingredients of Chinese peony, has demonstrated anti-inflammatory and immunoregulatory effects. However, it has remained unclear whether PF treatment can inhibit allergic inflammation in asthma. In this study, we evaluated the effects of PF on pulmonary function and airway inflammation in asthmatic mice. The allergic asthma models were established in BALB/c mice. The mice were sensitized and challenged with ovalbumin. Airway hyperresponsiveness was detected by direct airway resistance analysis. Lung tissues were examined for inflammatory cell infiltration. IL-5, IL-13, IL-17, and eotaxin in bronchoalveolar lavage fluid (BALF) and their mRNA expression in lung tissue were examined by ELISA and realtime PCR, respectively. The total IgE level in serum was measured by ELISA. The protein expression of p-ERK and p-JNK was detected by western blot. Our data showed that PF oral administration significantly reduced airway hyperresponsiveness to aerosolized methacholine and decreased IL-5, IL-13, IL-17 and eotaxin levels in the BALF, and decreased IgE level in the serum. Histological studies showed that PF administration markedly decreased inflammatory infiltration. Similarly, treatment with PF significantly inhibited IL-5, IL-13, IL-17 and eotaxin mRNA expression in lung tissues. The protein expression levels of p-ERK and p-JNK were substantially decreased after oral administration of PF. In summary, PF displayed anti-inflammatory effects in the OVA-induced asthmatic model by decreasing the expression of IL-5, IL-13, IL-17 and eotaxin. These effects were mediated at least partially by inhibiting the activation of MAPK pathway.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge