中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurology 2019-Mar

Patient MW: transient visual hemi-agnosia.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Thomas Decramer
Elsie Premereur
Lieven Lagae
Johannes van Loon
Peter Janssen
Stefan Sunaert
Tom Theys

關鍵詞

抽象

The concept of functional modularity in human visual processing was proposed 25 years ago with the distinction between a ventral pathway for object recognition and a dorsal pathway for action processing. Lesions along these pathways yield selective deficits. A 15-year-old patient (MW) presented with a seizure due to a lesion in the left occipitotemporal cortex. Surgical resection of the lesion was performed with sparing of the classic language areas and visual fields. Postoperatively MW had great difficulty reading and had a specific agnosia for more complex visual stimuli in the right hemifield. No deficit was seen for lower level visual discrimination tasks. Gradual improvement of hemi-agnosia was paralleled by slower reaction times reflecting a speed-accuracy trade-off. Absolute reading speed improved markedly over time, doubling at 6 weeks. MW fully recovered after 18 months. Postoperative functional Magnetic Resonance Imaging (fMRI) illustrated an overlap of the lesion with object and word processing areas. Diffusion Tensor Imaging showed damage to the white matter tracts [inferior fronto-occipital fasciculus and inferior longitudinal fasciculus (ILF)] interconnecting ventral temporal areas. A transient higher order deficit can result from a disruption of the neural network supporting visual word and object processing. Most visual system research has focused on cortical areas, while the underlying subcortical network received much less attention. We believe that white matter tracts, in particular the ILF, play a critical role in object perception by connecting visual areas along the ventral visual stream. Lesions of the ILF should be taken into consideration in agnosia.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge