中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ORL 2010

Physical and physiological effects on otoacoustic emissions in hypobaric hypoxia.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Rika Ide
Tatsuhiko Harada
Sho Kanzaki
Hideyuki Saito
Masako Hoshikawa
Takashi Kawahara
Kaoru Ogawa

關鍵詞

抽象

Tinnitus and dizziness are symptoms of acute mountain sickness. We investigated the mechanism by which high altitude (i.e. hypobaric hypoxia) affects inner ear function by measuring transient evoked otoacoustic emissions (TEOAE) and distortion product otoacoustic emissions (DPOAE) under conditions of normobaric normoxia (1,013 hPa; 760 mm Hg) and hypobaric hypoxia (540 hPa; 405 mm Hg). The possibility that air pressure effects on the eustachian tube impacted our findings was excluded by the use of tympanograms. The nonphysiological effects of hypobaric hypoxia on TEOAE and DPOAE were also assessed using an ear simulator. Under conditions of hypobaric hypoxia, both TEOAE and DPOAE levels were reduced. The amount of reduction that occurred was approximately 4 dB in the total echo power and signal-to-noise ratio of the TEOAE, and in the 2f(1) - f(2) element level of the DPOAE. Stimulus levels that were measured using an ear simulator were also reduced by approximately 4 dB under conditions of hypobaric hypoxia. These results do not indicate that stimulus levels affected TEOAE and DPOAE levels because these levels were actually only slightly affected by changes in the stimulus level. Instead, this reduction was likely due to the nonphysiological hypobaric effects of the sound pressure emitted from the tympanic membrane. We conclude that the impact of hypobaric hypoxia on cochlear function was negligible up to pressures of 540 hPa.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge