中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2018-May

RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Kang Wang
Lei Hu
Jian-Kang Chen

關鍵詞

抽象

Recent preclinical and clinical evidence suggests that hyperuricemia (HU) is an independent risk factor for metabolic syndrome, hypertension, cardiovascular disease and chronic kidney disease. Receptor-interacting protein 3 (RIP3) is an important contributor in inducing programmed necrosis, representing a newly identified mechanism of cell death combining features of both apoptosis and necrosis. In our study, RIP3 was strongly expressed in mice with hyperuricemia. RIP3 deficiency attenuated hyperuricemia in mice, evidenced by reduced serum uric acid and creatinine and enhanced urinary uric acid and creatinine, as well as the improved histological alterations in renal sections. Additionally, RIP3-deletion reduced malondialdehyde (MDA), H2O2 and O2-, whereas enhanced superoxide dismutase (SOD), GSH and GSH-Px levels in potassium oxonate-induced mice. Potassium oxonate-treated mice showed significantly high mRNA levels of ATP-binding cassette, subfamily G, membrane 2 (ABCG2), organic anion transporter 1 (OAT1), OAT3, organic cation transporter 1 (OCT1) and organic cation/carnitine transporter 1 (OCTN1) in renal tissue samples, which were reversed by RIP3-deficiency. Meanwhile, down-regulation of circulating and kidney pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) were observed in RIP3-knockout mice with hyperuricemia, associated with inactivation of toll-like receptor 4 (TLR4), inhibitor of NF-κB alpha (IκBα) and nuclear factor kappa B (NF-κB). NLR family, pyrin domain-containing 3 (NLRP3) inflammasome was also suppressed by RIP3 knockout in potassium oxonate-treated mice. Importantly, RIP3-knockout mice exhibited the decrease of FAS-associated protein with a death domain (FADD), cleaved Caspase-8/-3 and Poly (ADP-ribose) polymerase (PARP) in renal samples, along with TUNEL reduction in mice with hyperuricemia. Similar results were observed in uric acid-incubated cells with RIP3 knockdown. Thus, we suggested that RIP3 played an important role in mice with hyperuricemia, which might be a novel signal pathway targeting for therapeutic strategies in future.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge