中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FASEB Journal 2003-Jan

Role of S-adenosylmethionine in two experimental models of pancreatitis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Shelly C Lu
Ilya Gukovsky
Aurelia Lugea
Christopher N Reyes
Zong-Zhi Huang
Lixin Chen
José M Mato
Teodoro Bottiglieri
Stephen J Pandol

關鍵詞

抽象

Severe necrotizing pancreatitis occurs in young female mice fed a choline-deficient and ethionine-supplemented (CDE) diet. Although the mechanism of the pancreatitis is unknown, one consequence of this diet is depletion of hepatic S-adenosylmethionine (SAM). SAM formation is catalyzed by methionine adenosyltransferases (MATs), which are encoded by liver-specific (MAT1A) and non-liver-specific (MAT2A) genes. In this work, we examined changes in pancreatic SAM homeostasis in mice receiving the CDE diet and the effect of SAM treatment. We found that both MAT forms are expressed in normal pancreas and pancreatic acini. After 48 h of the CDE diet, SAM levels decreased 50% and MAT1A-encoded protein disappeared via post-translational mechanisms, whereas MAT2A-encoded protein increased via pretranslational mechanisms. CDE-fed mice exhibited extensive necrosis, edema, and acute pancreatic inflammatory infiltration, which were prevented by SAM treatment. However, old female mice consuming the CDE diet that do not develop pancreatitis showed a similar fall in pancreatic SAM level. SAM was also protective in cerulein-induced pancreatitis in the rat, but the protection was limited. Although the pancreatic SAM level fell by more than 80% in the MAT1A knockout mice, no pancreatitis developed. This study thus provides several novel findings. First, the so-called liver-specific MAT1A is highly expressed in the normal pancreas and pancreatic acini. Second, the CDE diet causes dramatic changes in the expression of MAT isozymes by different mechanisms. Third, in contrast to the situation in the liver, where absence of MAT1A and decreased hepatic SAM level can lead to spontaneous tissue injury, in the pancreas the roles of SAM and MAT1A appear more complex and remain to be defined.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge