中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2005-Dec

Screening the receptorome for plant-based psychoactive compounds.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Kerry Ann O'Connor
Bryan L Roth

關鍵詞

抽象

Throughout time, humans have used psychoactive plants and plant-derived products for spiritual, therapeutic and recreational purposes. Furthermore, the investigation of psychoactive plants such as Cannabis sativa (marijuana), Nicotiana tabacum (tobacco) and analogues of psychoactive plant derivatives such as lysergic acid diethylamide (LSD) have provided insight into our understanding of neurochemical processes and diseases of the CNS. Currently, many of these compounds are being used to treat a variety of diseases, such as depression and anxiety in the case of Piper methysticum Kava Kava (Martin et al., 2002; Singh and Singh, 2002). G-protein coupled receptors (GPCRs) are the most common molecular target for both psychoactive drugs and pharmaceuticals. The "receptorome" (that portion of the genome encoding ligand reception) encompasses more than 8% of the human genome (Roth et al., 2004) and as such provides a large number of possible targets for psychoactive drug interactions. A systematic, comprehensive study is necessary to identify novel active psychoactive plant-based compounds and the molecular targets of known compounds. Herein we describe the development of a high throughput system (HTS) to screen psychoactive compounds against the receptorome and present two examples (Salvia divinorum, the "magic mint" hallucinogen and Banisteriopsis caapi, the main component of Ayahuasca, a psychoactive beverage) where HTS enabled the identification of the molecular target of each compound.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge