中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photosynthesis Research 2004

Serine:glyoxylate aminotransferases from maize and wheat leaves: purification and properties.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Wiesław Truszkiewicz
Andrzej Paszkowski

關鍵詞

抽象

Photorespiratory enzyme serine:glyoxylate aminotransferase (SGAT, EC 2.6.1.45) was purified from green parts of seedlings of two Gramminae species with different photosynthetic pathways, maize (Zea mays L., C(4) species) and wheat (Triticum aestivum L., C(3) species). The preparation from wheat was homogeneous as judged by SDS-PAGE with silver staining for proteins; however, the same method revealed approximately 9% contamination in a highly purified maize preparation. Molecular masses of SGAT from maize and wheat were estimated by SDS-PAGE to be 44.1 and 44.6 kDa, respectively. C(4) enzyme exhibited a specific activity in homogenates that was seven times lower than wheat, and this was associated with lower K (m) values for all substrates examined as well as a more than two times lower turnover number k (cat) with serine and glyoxylate as a pair of substrates. In contrast, the ratio of the turnover number to K (m)(Ser)(k (cat)/K (m)(Ser)) for C(4) aminotransferase proved to be about two times higher than for C(3) aminotransferase. The sensitivity of two enzymes to some inhibitors, especially aminooxyacetate, was different and they also differed with respect to thermal stability and pH optimum - the maize enzyme required 0.6 unit higher pH (8.6) for maximal activity and was more heat-resistant.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge