中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Regulatory Integrative and Comparative Physiology 2018-Aug

Soleus muscle stability in wild hibernating black bears.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
D A Riley
J M Van Dyke
V Vogel
B D Curry
J L W Bain
R Schuett
D L Costill
T Trappe
K Minchev
S Trappe

關鍵詞

抽象

Based on studies of fast skeletal muscles, hibernating black and brown bears resist skeletal muscle atrophy during months of reduced physical activity and not feeding. The present study examined atrophy sparing in the slow soleus muscle, known to be highly prone to disuse atrophy in humans and other mammals. We demonstrated histochemically that the black bear soleus is rich in slow fibers, averaging 84.0 ± 6.6%. The percentages of slow fibers in fall (87.3 ± 4.9%) and during hibernation (87.1 ± 5.6%) did not differ ( P = 0.3152) from summer. The average fiber cross-sectional area to body mass ratio (48.6 ± 11.7 µm2/kg) in winter hibernating bears was not significantly different from that of summer (54.1 ± 11.8 µm2/kg, P = 0.4186) and fall (47.0 ± 9.7 µm2/kg, P = 0.9410) animals. The percentage of single hybrid fibers containing both slow and fast myosin heavy chains, detected biochemically, increased from 2.6 ± 3.8% in summer to 24.4 ± 24.4% ( P = 0.0244) during hibernation. The shortening velocities of individual hybrid fibers remained unchanged from that of pure slow and fast fibers, indicating low content of the minority myosins. Slow and fast fibers in winter bears exhibited elevated specific tension (kN/m2; 22%, P = 0.0161 and 11%, P = 0.0404, respectively) and maintained normalized power. The relative stability of fiber type percentage and size, fiber size-to-body mass ratio, myosin heavy chain isoform content, shortening velocity, power output, and elevated specific tension during hibernation validates the ability of the black bear to preserve the biochemical and performance characteristics of the soleus muscle during prolonged hibernation.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge