中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2015-Dec

Sparstolonin B inhibits lipopolysaccharide-induced inflammation in 3T3-L1 adipocytes.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Ming Wang
Liangchang Xiu
Jianxin Diao
Lianbo Wei
Jia Sun

關鍵詞

抽象

Sparstolonin B (SsnB), an isocoumarin compound isolated from the tubers of both Sparganium stoloniferum and Scirpus yagara, has been reported to have anti-inflammatory effects. However, whether SsnB has anti-inflammatory effects on LPS-stimulated 3T3-L1 adipocytes remains unclear. In this study, we investigated the effects of SsnB on adipocyte inflammation in 3T3-L1 adipocytes and anti-obesity properties in high fat diet (HFD)-induced obese rats. 3T3-L1 adipocytes were pretreated with SsnB 1h before LPS treatment. The expression of MCP-1, IL-6, TNF-α, and IL-10 were measured by qRT-PCR and ELISA. The expression of PPAR-γ, TLR4 and NF-κB were detected by western blotting. SsnB was administered to HFD-induced obese rats to confirm its effects in vivo. Our results showed that SsnB dose-dependently inhibited LPS-induced MCP-1, IL-6, and TNF-α production. SsnB was found to inhibit LPS-induced TLR4 expression and NF-κB activition. Furthermore, SsnB was found to activate PPAR-γ and the inhibitory effects of SsnB on MCP-1, IL-6, and TNF-α production can be reversed by PPAR-γ antagonist GW9662. In vivo, SsnB was found to reduce the body weight of rats fed with HFD. SsnB also inhibited the levels of serum triglyceride (TG) and cholesterol (TC) induced by HFD. In conclusion, the results suggested that SsnB could reduce HFD-induced obesity in rats and inhibited LPS-induced cytokines production in 3T3-L1 adipocytes by activating PPAR-γ.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge