中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects

Sphingolipids of the nucleus and their role in nuclear signaling.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Robert W Ledeen
Gusheng Wu

關鍵詞

抽象

Sphingolipids have important signaling and regulatory roles in the nuclei of all vertebrate cells examined to date. Sphingomyelin (SM) is the most abundant of this group and occurs in the nuclear envelope (NE) as well as intranuclear sites. The primary product of SM metabolism is ceramide, whose release by nuclear sphingomyelinase triggers apoptosis and other metabolic changes in the nucleus. Further catabolism results in free fatty acid and sphingosine formation, the latter being capable of conversion to sphingosine phosphate by action of a specific nuclear kinase. Finally, glycosphingolipids such as gangliosides occur in the NE where GM1, one member of the gangliotetraose family, influences Ca(2+) flux by activation of a Na(+)/Ca(2+) exchanger located in the inner membrane of the NE. The tightly associated GM1/exchanger complex was shown to exert a cytoprotective role in neurons and other cell types, as absence of this nuclear complex rendered cells vulnerable to apoptosis. A striking example of this mode of Ca(2+) regulation is the greatly enhanced seizure activity in knockout mice lacking gangliotetraose gangliosides, involving programmed cell death in the CA3 region of the hippocampus. In this model, Ca(2+) homeostasis was restored most effectively with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge