中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
New Phytologist 2012-Jan

Sphingosine in plants--more riddles from the Sphinx?

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
M Nurul Islam
Marie-Pierre Jacquemot
Sylvie Coursol
Carl K-Y Ng

關鍵詞

抽象

• Sphingolipids are emerging as important mediators of cellular and developmental processes in plants, and advances in lipidomics have yielded a wealth of information on the composition of plant sphingolipidomes. Studies using Arabidopsis thaliana showed that the dihydroxy long-chain base (LCB) is desaturated at carbon position 8 (d18:1(Δ8)). This raised important questions on the role(s) of sphingosine (d18:1(Δ4)) and sphingosine-1-phosphate (d18:1(Δ4)-P) in plants, as these LCBs appear to be absent in A. thaliana. • Here, we surveyed 21 species from various phylogenetic groups to ascertain the position of desaturation of the d18:1 LCB, in order to gain further insights into the prevalence of d18:1(Δ4) and d18:1(Δ8) in plants. • Our results showed that d18:1(Δ8) is common in gymnosperms, whereas d18:1(Δ4) is widespread within nonseed land plants and the Poales, suggesting that d18:1(Δ4) is evolutionarily more ancient than d18:1(Δ8) in Viridiplantae. Additionally, phylogenetic analysis indicated that the sphingolipid Δ4-desaturases from Viridiplantae form a monophyletic group, with Angiosperm sequences falling into two distinct clades, the Eudicots and the Poales. • We propose that efforts to elucidate the role(s) of d18:1(Δ4) and d18:1(Δ4)-P should focus on genetically tractable Viridiplantae species where the d18:1 LCB is desaturated at carbon position 4.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge