中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Cosmetic Science 2006-Feb

Studies of compounds that enhance sphingolipid metabolism in human keratinocytes.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
I Popa
K Bennaceur
N Abdul-Malak
E Perrier
D Schmitt
J Portoukalian

關鍵詞

抽象

Several products are known to inhibit the biosynthesis of ceramides and glucosylceramides, but very few stimulate this process. We studied the influence of a hydrolysate of potato proteins (Lipidessence) in vitro on the sphingolipid metabolism of normal human epidermal keratinocytes. By measuring growth with the thymidine uptake assay, it was seen that Lipidessence, added in the culture medium up to an 8% concentration, did not change significantly the proliferation rate of keratinocytes, but beyond this concentration a progressive dose-dependent inhibition of growth was noticeable. Following incubation of cells with the product at 5% and 10% concentrations for 2 days, the lipids were extracted. The different lipid classes were separated by fractionation on columns of aminopropyl silica gel and analyzed by high-performance thin-layer chromatography. When keratinocytes were cultivated in the presence of Lipidessence, the biosynthesis of cholesterol, phosphatidylcholine, phosphatidylserine and gangliosides was stimulated, and a major increase was noticeable in the biosynthesis of free fatty acids, free ceramides, glucosylceramide and sphingomyelin. Radioactive [(14)C]-serine was used as a precursor of sphingoid bases to study sphingolipid biosynthesis. After migration of lipid fractions on thin-layer plates, autoradiography showed that free ceramides and glucosylceramide were labeled, thus suggesting that de novo biosynthesis was accounting for the increased cellular content in sphingolipids.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge