中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell 2012-Mar

Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Huiming Zhang
Xiangyang Deng
Daisuke Miki
Sean Cutler
Honggui La
Yueh-Ju Hou
Jeeeun Oh
Jian-Kang Zhu

關鍵詞

抽象

DNA methylation is a critical, dynamically regulated epigenetic mark. Small chemicals can be valuable tools in probing cellular processes, but the set of chemicals with broad effects on epigenetic regulation is very limited. Using the Arabidopsis thaliana repressor of silencing1 mutant, in which transgenes are transcriptionally silenced, we performed chemical genetic screens and found sulfamethazine (SMZ) as a chemical suppressor of epigenetic silencing. SMZ treatment released the silencing of transgenes as well as endogenous transposons and other repetitive elements. Plants treated with SMZ exhibit substantially reduced levels of DNA methylation and histone H3 Lys-9 dimethylation, but heterochromatic siRNA levels were not affected. SMZ is a structural analog and competitive antagonist to p-aminobenzoic acid (PABA), which is a precursor of folates. SMZ decreased the plant folate pool size and caused methyl deficiency, as demonstrated by reductions in S-adenosylmethionine levels and in global DNA methylation. Exogenous application of PABA or compounds downstream in the folate biosynthesis pathway restored transcriptional silencing in SMZ-treated plants. Together, our results revealed a novel type of chemical suppressor of epigenetic silencing, which may serve as a valuable tool for studying the roles and mechanisms of epigenetic regulation and underscores an important linkage between primary metabolism and epigenetic gene regulation.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge