中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 1997-Oct

Survey and Characterization of Viruses in Sweetpotato from Zimbabwe.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Farayi Chavi
A Robertson
Benedictus Verduin

關鍵詞

抽象

Thirty-one clones of sweetpotatoes collected from some parts of Zimbabwe were used as inoculum sources to mechanically inoculate 13 experimental hosts: Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Datura stramoniumitalic, Gomphrena globosa, Ipomoea purpurea, I. quamoclit, I. rubrocorulea, Nicotiana benthamiana, N. clevelandii, N. glutinosa, N. rustica, and N. tabacum. Systemic vein clearing was observed in N. benthamiana inoculated with buffered sap from nine clones. Purification of the vein clearing inducing agent from one of the sweetpotato clones gave yields ranging from 2 to 17 mg/kg and the A260nm/A280nm was around 1.2. Electron microscopy revealed flexuous filamentous particles with a modal length of 830 nm. Protein analysis of purified virus preparations by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a major protein band of 40 kDa, and this was assumed to be the viral coat protein. Minor protein bands of 27, 37, and 46 kDa were also observed. The viral protein degraded upon storage at 4°C over time to yield a protein band of 27 kDa. Polyclonal antiserum was produced against the purified virus. Protein A gold labeling of the purified virus incubated with available antisera; sweetpotato chlorotic stunt virus (SPCSV), sweetpotato feathery mottle virus strain russet crack (SPFMV-RC), sweetpotato feathery mottle virus, sweetpotato mild mottle virus, sweetpotato latent virus, sweetpotato chlorotic fleck virus, and sweetpotato caulimo-like virus resulted in a higher labeling density with the antiserum of SPFMV-RC than with the antiserum of SPCSV, while the other sera did not react. Further characterization of the vein clearing inducing agent was attempted by reverse transcription-polymerase chain reaction amplification of total RNA with degenerate primers for potyviruses and an oligo dT primer and PCR products of correct size were obtained. The nucleotide sequence was determined and the amino acid of the polyprotein deduced. Comparison with other strains of SPFMV showed strong similarity except for an insertion of 22 amino acids at the N-terminus of the coat protein. The coat protein size of 335 amino acids is the biggest SPFMV so far determined.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge