中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Amino Acids 2000

Synthesis and biological activity of canavanine hydrazide derivatives.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
J Miersch
K Grancharov
T Pajpanova
S Tabakova
S Stoev
G J Krauss
E Golovinsky

關鍵詞

抽象

The canavanine derivatives L-canavanine hydrazide (CH), L-canavanine-bis-(2-chloroethyl)hydrazide (CBCH) and L-canavanine phenylhydrazide (CPH) were synthesized and evaluated for biological activity in microorganisms, plants and tumor cells using canavanine as a positive control. (1) In microbial systems, the compounds exerted activity, as assessed in 14 bacterial strains. The effect of canavanine was easily removed by equimolar concentrations of arginine or ornithine, while the effect of CBCH or CPH was abolished by 10-fold excess of arginine or 10- to 100-fold excess of ornithine. (2) In plants, the activity of CH and CBCH were relatively low, whereas the inhibitory potential of CPH was comparable or even superior to that of canavanine, resulting at 1 mM concentration in a nearly complete block of tomato cell growth, and reducing by up to 80% the length of radicles of cress, amaranth, cabbage and pumpkin. (3) In pumpkin seeds, CPH or canavanine induced the synthesis of four small heat shock proteins of hsp-17 family in the pH range of 6 to 7.5. The proteins exhibited in both cases a similar profile, but differed in the timing of their expression and/or accumulation. With canavanine, the highest hsp-17 expression was found after 48 h of drug treatment, while with CPH this maximum was shifted to 24 h. (4) CPH proved to be highly cytotoxic against Friend leukemia cells in culture, exceeding by one order of magnitude the cytotoxicity of canavanine. The effect of canavanine was completely removed in the presence of equimolar amounts of arginine, while a 20-fold excess of arginine failed to abolish the cytotoxicity of CPH. Thus, a proper hydrazide modification of canavanine may lead to a significant increase in its growth-inhibitory activity and to a change in the mode of action of the parent compound.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge