中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteome Research 2008-Oct

Temporal metabonomic modeling of l-arginine-induced exocrine pancreatitis.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Eszter Bohus
Muireann Coen
Hector C Keun
Timothy M D Ebbels
Olaf Beckonert
John C Lindon
Elaine Holmes
Béla Noszál
Jeremy K Nicholson

關鍵詞

抽象

The time-related metabolic responses to l-arginine (ARG)-induced exocrine pancreatic toxicity were investigated using single ip doses of 1,000 and 4,000 mg/kg body weight over a 7 day experimental period in male Sprague-Dawley rats. Sequential timed urine and plasma samples were analyzed using high resolution (1)H NMR spectroscopy together with complementary clinical chemistry and histopathology analyses. Principal components analysis (PCA) and orthogonal projection on latent structures discriminant analysis (O-PLS-DA) were utilized to analyze the (1)H NMR data and to extract and identify candidate biomarkers and to construct metabolic trajectories post ARG administration. Low doses of ARG resulted in virtually no histopathological damage and distinct reversible metabolic response trajectories. High doses of ARG caused pancreatic acinar degeneration and necrosis and characteristic metabolic trajectory profiles with several distinct phases. The initial trajectory phase (0-8 h) involved changes in the urea cycle and transamination indicating a homeostatic response to detoxify excess ammonia generated from ARG catabolism. By 48 h, there was a notable enhancement of the excretion of the gut microbial metabolites, phenylacetylglycine (PAG), 4-cresol-glucuronide and 4-cresol-sulfate, suggesting that compromised pancreatic function impacts on the activity of the gut microbiota giving potential rise to a novel class of surrogate extragenomic biomarkers of pancreatic injury. The implied compromise of microbiotal function may also contribute to secondary hepatic and pancreatic toxic responses. We show here for the first time the value of metabonomic studies in investigating metabolic disruption due to experimental pancreatitis. The variety of observed systemic responses suggests that this approach may be of general value in the assessment of other animal models or human pancreatitis.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge