中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1990-Nov

The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
F B Pickett
A K Wilson
M Estelle

關鍵詞

抽象

Mutagenized populations of Arabidopsis thaliana seedlings were screened for plants capable of root growth on inhibitory concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Four of the mutant lines recovered from this screen display a defect in root gravitropism as well as hormone resistance. The aerial portions of these plants are similar to wild-type in appearance. Genetic analysis of these four mutants demonstrated that hormone resistance segregated as a recessive trait and that all four mutations were alleles of the auxin-resistant mutation aux1 [Maher HP, Martindale SJB (1980) Biochem Genet 18: 1041-1053]. These new mutants have been designated aux1-7, 1-12, 1-15, and 1-19. The sensitivity of wild-type and aux1-7 roots to indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, and ethylene was determined. The results of these assays show that aux1-7 plants require a 12-fold (indole-3-acetic acid) or 18-fold (2,4-dichlorophenoxyacetic acid) higher concentration of auxin than wild-type for a 50% inhibition of root growth. In addition, ethylene inhibition of root growth in aux1-7 plants is approximately 30% that of wild-type at saturating ethylene concentrations. These results indicate that aux1 plants are resistant to both auxin and ethylene. We have also determined the effect of ethylene treatment on chlorophyll loss and peroxidase activity in the leaves of aux1 and wild-type plants. No difference between mutant and wild-type plants was observed in these experiments, indicating that hormone resistance in aux1 plants may be limited to root growth. Our studies suggest that the AUX1 gene may have a specific function in the hormonal regulation of gravitropism.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge