中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2003-Dec

The biosynthesis of cysteine and homocysteine in Methanococcus jannaschii.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Robert H White

關鍵詞

抽象

The pathway for the biosynthesis of cysteine and homocysteine in Methanococcus jannaschii has been examined using a gas chromatography-mass spectrometry (GC-MS) stable isotope dilution method to identify and quantitate the intermediates in the pathways. The first step in the pathway, and the one responsible for incorporation of sulfur into both cysteine and methionine, is the reaction between O-phosphohomoserine and a presently unidentified sulfur source present in cell extracts, to produce L-homocysteine. This sulfur source was shown not to be sulfide. The resulting L-homocysteine then reacts with O-phosphoserine to form L-cystathionine, which is cleaved to L-cysteine. The pathway has elements of both the plant and mammalian pathways in that the sulfur is first incorporated into homocysteine using O-phosphohomoserine as the acceptor and the resulting homocysteine, via transsulfuration, supplies the sulfur for cysteine formation. The pathway leading to these two amino acids represents an example of metabolic thrift where the preexisting cellular metabolites O-phosphohomoserine and O-phosphoserine are used as the ultimate source of the carbon framework for the biosynthesis of these amino acids. These findings explain the absence of identifiable genes in the genome of this organism for the biosynthesis of cysteine and homocysteine.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge