中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Insect Physiology 2012-Dec

Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Bridget DeLay
Praveen Mamidala
Asela Wijeratne
Saranga Wijeratne
Omprakash Mittapalli
Jian Wang
William Lamp

關鍵詞

抽象

The potato leafhopper, Empoasca fabae, is a pest of economic crops in the United States and Canada, where it causes damage known as hopperburn. Saliva, along with mechanical injury, leads to decreases in gas exchange rates, stunting and chlorosis. Although E. fabae saliva is known to induce plant responses, little knowledge exists of saliva composition at the molecular level. We subjected the salivary glands of E. fabae to Roche 454-pyrosequencing which resulted significant number (30,893) of expressed sequence tags including 2805 contigs and 28,088 singletons. A high number of sequences (78%) showed similarity to other insect species in GenBank, including Triboliumcastaneum, Drosophilamelanogaster and Acrythosiphonpisum. KEGG analysis predicted the presence of pathways for purine and thiamine metabolic, biosynthesis of secondary metabolites, drug metabolism, and lysine degradation. Pfam analysis showed a high number of cellulase and carboxylesterase protein domains. Expression analysis of candidate genes (alpha amylase, lipase, pectin lyase, etc.) among different tissues revealed tissue-specific expression of digestive enzymes in E. fabae. This is the first study to characterize the sialotranscriptome of E. fabae and the first for any species in the family of Cicadellidae. Due to the status of these insects as economic pests, knowledge of which genes are active in the salivary glands is important for understanding their impact on host plants.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge