中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2016-Dec

Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Pei-Xin Lai
Chung-Wein Chen
Shih-Chun Wei
Tzu-Yu Lin
Hong-Jyuan Jian
Irving Po-Jung Lai
Ju-Yi Mao
Pang-Hung Hsu
Han-Jia Lin
Wen-Shyong Tzou

關鍵詞

抽象

Angiogenesis is the process of formation of new blood vessels, which is essential to human biology, and also plays a crucial role in several pathologies such as tumor growth and metastasis, exudative age-related macular degeneration, and ischemia. Vascular endothelial growth factor (VEGF), in particular, VEGF-A165 is the most important pro-angiogenic factor for angiogenesis. Thus, blocking the interaction between VEGFs and their receptors is considered an effective anti-angiogenic strategy. We demonstrate for that first time that bovine serum albumin-capped graphene oxide (BSA-GO) exhibits high stability in physiological saline solution and possesses ultrastrong binding affinity towards VEGF-A165 [dissociation constant (Kd) ∼3 × 10-12 M], which is at least five orders of magnitude stronger than that of high-abundant plasma proteins such as human serum albumin, fibrinogen, transferrin, and immunoglobulin G. Due to the surprising binding specificity of BSA-GO for VEGF-A165 in complex plasma fluid, we have also studied the anti-angiogenic effects in vitro and in vivo. Results show that BSA-GO not only effectively inhibits the proliferation, migration and tube formation of human umbilical vein endothelial cells, but also strongly disturbs the physiological process of angiogenesis in chick chorioallantoic membrane and blocks VEGF-A165-induced blood vessel formation in rabbit corneal neovascularization. Our findings indicate that GO nanomaterials can potentially act as therapeutic anti-angiogenic agents via ultrastrong VEGF adsorption and its activity suppression.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge