中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2013-Oct

Unexpected mode of action of sweet potato β-amylase on maltooligomer substrates.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Erika Fazekas
Katalin Szabó
Lili Kandra
Gyöngyi Gyémánt

關鍵詞

抽象

β-Amylase (EC 3.2.1.2), one of the main protein of the sweet potato, is an exo-working enzyme catalyzing the hydrolysis of α(1,4) glycosidic linkages in polysaccharides and removes successively maltose units from the non-reducing ends. The enzyme belongs to glycoside hydrolase GH14 family and inverts the anomeric configuration of the hydrolysis product. Multiple attack or processivity is an important property of polymer active enzymes and there is still limited information about the processivity of carbohydrate active enzymes. Action pattern and kinetic measurements of sweet potato β-amylase were made on a series of aromatic chromophor group-containing substrates (degree of polymerization DP 3-13) using HPLC method. Measured catalytic efficiencies increased with increasing DP of the substrates. Processive cleavage was observed on all substrates except the shortest pentamer. The mean number of steps without dissociation of enzyme-product complex increases with DP of substrate and reached 3.3 in case of CNPG11 indicating that processivity on longer substrates was more significant. A unique transglycosylation was observed on those substrates, which suffer processive cleavage and the substrates were re-built by the enzyme. Our results are the first presentation of a transglycosylation during an inverting glycosidase catalyzed hydrolysis. The yield of transglycosylation was remarkable high as shown in the change of the CNPG11 quantity. The CNPG11 concentration was doubled (from 0.24 to 0.54mM) in the early phase of the reaction.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge