中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Pharmaceutical Design 2004

Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Paulo A S Mourão

關鍵詞

抽象

Sulfated alpha-L-fucans from brown algae (also known as fucoidan) have complex and heterogeneous structures but recent studies revealed the occurrence of ordered repeat units in the sulfated fucans from several species. Even in these cases, the presence of highly branched portions and the complex distributions of sulfate and acetyl groups highlight the heterogeneity of algal fucans. Another source of sulfated alpha-L-fucans (and their parental compounds sulfated alpha-L-galactans and fucosylated chondroitin sulfate) is marine invertebrates. The invertebrate polysaccharides have simple, ordered structures, which differ in the specific patterns of sulfation and/or position of the glycosidic linkages within their repeating units. The algal and invertebrate sulfated fucans have potent anticoagulant activity, mediated by antithrombin and/or heparin cofactor II. As most of the studies were carried out with algal fucans it was not easy to trace a structure versus activity relationship. This aspect was clarified as studies were extended to invertebrate polysaccharides. These definitively established that regular, linear sulfated alpha-L-fucans and sulfated alpha-L-galactans express anticoagulant activity, which is not simply a function of charge density, but depends critically on the pattern of sulfation and monosaccharide composition. Sulfated alpha-L-fucans and fucosylated chondroitin sulfate also express antithrombotic activity when tested on in vivo models of venous and arterial thrombosis in experimental animals. These polysaccharides constitute potential therapeutic compounds as alternative to heparin and may help to design structure-based drugs with specific activity on each type of thrombosis episode and few side effects. They can also serve as research reagents to investigate and distinguish among a variety of interrelated events, such as coagulation, bleeding, thrombosis and platelet aggregation.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge