中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Thorax 1997-Jan

Vasopressin and oxytocin release during prolonged environmental hypoxia in the rat.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
H Kelestimur
R M Leach
J P Ward
M L Forsling

關鍵詞

抽象

BACKGROUND

The mechanism causing peripheral oedema in hypoxaemic chronic obstructive pulmonary disease has not been established. Vasopressin, a powerful antidiuretic hormone involved in salt and water homeostasis, is released in response to acute hypoxia. However, the effect of prolonged hypoxaemia on hypothalamic and pituitary release of the magnocellular hypothalamic hormones, vasopressin and oxytocin, has not previously been studied.

METHODS

Male Wistar rats were randomly allocated to either normobaric, hypoxic (10% O2) or control (21% O2) environmental chambers. An initial series of experiments examined plasma vasopressin concentration, osmolality, sodium concentration, packed cell volume (PCV), and weight gain at weekly intervals (n = 4-6) for six weeks. The maximum increase in plasma vasopressin concentration and PCV occurred after five weeks. In a second experiment vasopressin and oxytocin concentrations in the hypothalamus, pituitary gland, and plasma were measured in eight control and eight hypoxic rats after five weeks in the environmental chambers.

RESULTS

In rats exposed to environmental hypoxia PCV increased (p < 0.001) and weight gain decreased (p < 0.05) compared with controls. The plasma vasopressin concentration increased progressively from a baseline of 1.36 (0.2) pmol/l (n = 6) to a maximum of 4.38 (0.8) pmol/l (n = 6; p < 0.01) during the first five weeks of environmental hypoxia (difference 3.02 (95% CI 1.18 to 4.86)). Plasma osmolality and sodium concentration were unchanged in hypoxic rats compared with controls during the six week period. The hypothalamic vasopressin concentration was increased (p < 0.001) after five weeks of environmental hypoxia (91.6 (4.8) pmol/ hypothalamus) compared with controls (57.4 (5.1) pmol/hypothalamus), the difference being 34.2 pmol/hypothalamus (95% CI 21.6 to 46.5). The pituitary vasopressin concentration was unchanged. In hypoxic rats hypothalamic oxytocin (59.6 (3.2) pmol/hypothalamus) was greater (p < 0.01) than in controls (42 (3.8) pmol/hypothalamus), a difference of 17.6 pmol/ hypothalamus (95% CI 8.7 to 26.5). Similarly, the plasma oxytocin concentration was increased (p < 0.05) in hypoxic rats (6.78 (1.2) pmol/l) compared with controls (3.3 (0.8) pmol/l), a difference of 3.48 pmol/l (95% CI 0.89 to 6.07). The pituitary oxytocin concentration was unchanged in the two groups.

CONCLUSIONS

These results demonstrate an increase in hypothalamic production of vasopressin and oxytocin in rats during prolonged hypoxaemia. Increased plasma concentrations of neurohypophysial hormones would be expected to impair sodium and water homeostasis in patients with hypoxaemia. However, the absence of change in the plasma osmolality and sodium concentrations in this study and previous clinical investigations suggests that compensatory mechanisms modulate the actions of both vasopressin and oxytocin. A reduction in renal blood flow or decreased renal responsiveness to the neurohypophyseal hormones may be involved.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge