中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1970-Jul

Water potential components in growing citrus fruits.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
M R Kaufmann

關鍵詞

抽象

Growing navel orange fruits (Citrus sinensis) 5.4 to 5.7 centimeters in diameter were used as a model system to determine the effects of transpiration and carbohydrate translocation on water and osmotic potentials in fruit tissues. Evidence supported the hypothesis that osmotic potential in the vesicles would be affected little by changes in transpiration or carbohydrate translocation because the vesicles are anatomically isolated from the transpiration stream and are at the end of the carbohydrate translocation pathway. In the mesocarp tissue, which contains a vascular network, osmotic potential decreased during the daytime when environmental conditions favored transpiration and increased at night. Exocarp water potential followed a similar pattern. Girdling of the stem above the fruits 5 days before sampling caused an increase of osmotic potential in the mesocarp but had no effect on exocarp water potential. Neither diurnal changes in transpiration nor girdling of the stem affected the osmotic potential of the vesicles.Osmotic potentials in all tissues of the fruit were in the range of -10 to -15 bars. Measurements of osmotic potential at 16 locations along a longitudinal plant through the fruit axis showed that osmotic potential increased from the stem to the stylar end, but it decreased from the pericarp tissues to the vesicles. As exocarp water potential decreased during a 20-day period after watering, osmotic potential decreased in the vesicles and exocarp. Turgor pressure, calculated as the difference between water and osmotic potentials, decreased with water potential in the vesicles but not in the exocarp. The lack of decrease of turgor pressure in the exocarp may result from a measurement error caused by pectins or from osmotic adjustment related to carbohydrate accumulation at low water potentials.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge