中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2011-Feb

Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury.

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Cynthia N Perry
Chengqun Huang
Wayne Liu
Najib Magee
Raquel Sousa Carreira
Roberta A Gottlieb

關鍵詞

抽象

A significant consequence of ischemia/reperfusion (I/R) is mitochondrial respiratory dysfunction, leading to energetic deficits and cellular toxicity from reactive oxygen species (ROS). Mammalian complex I, a NADH-quinone oxidoreductase enzyme, is a multiple subunit enzyme that oxidizes NADH and pumps protons across the inner membrane. Damage to complex I leads to superoxide production which further damages complex I as well as other proteins, lipids and mtDNA. The yeast, S. cerevisiae, expresses internal rotenone insensitive NADH-quinone oxidoreductase (Ndi1); a single 56 kDa polypeptide which, like the multi-subunit mammalian complex I, serves as the entry site of electrons to the respiratory chain, but without proton pumping. Heterologous expression of Ndi1 in mammalian cells results in protein localization to the inner mitochondrial membrane which can function in parallel with endogenous complex I to oxidize NADH and pass electrons to ubiquinone. Expression of Ndi1 in HL-1 cardiomyocytes and in neonatal rat ventricular myocytes protected the cells from simulated ischemia/reperfusion (sI/R), accompanied by lower ROS production, and preservation of ATP levels and NAD+/NADH ratios. We next generated a fusion protein of Ndi1 and the 11aa protein transduction domain from HIV TAT. TAT-Ndi1 entered cardiomyocytes and localized to mitochondrial membranes. Furthermore, TAT-Ndi1 introduced into Langendorff-perfused rat hearts also localized to mitochondria. Perfusion of TAT-Ndi1 before 30 min no-flow ischemia and up to 2 hr reperfusion suppressed ROS production and preserved ATP stores. Importantly, TAT-Ndi1 infused before ischemia reduced infarct size by 62%; TAT-Ndi1 infused at the onset of reperfusion was equally cardioprotective. These results indicate that restoring NADH oxidation and electron flow at reperfusion can profoundly ameliorate reperfusion injury.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge