中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedicines 2020-Jul

The Role of FAT10 in Alcoholic Hepatitis Pathogenesis

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Yue Jia
Ping Ji
Samuel French

關鍵詞

抽象

FAT10 expression is highly up-regulated by pro-inflammatory cytokines IFNγ and TNFα in all cell types and tissues. Increased FAT10 expression may induce increasing mitotic non-disjunction and chromosome instability, leading to tumorigenesis. In this review, we summarized others' and our work on FAT10 expression in liver biopsy samples from patients with alcoholic hepatitis (AH). FAT10 is essential to maintain the function of liver cell protein quality control and Mallory-Denk body (MDB) formation. FAT10 overexpression in AH leads to balloon degeneration and MDB aggregation formation, all of which is prevented in fat10-/- mice. FAT10 causes the proteins' accumulation, overexpression, and forming MDBs through modulating 26s proteasome's proteases. The pathway that increases FAT10 expression includes TNFα/IFNγ and the interferon sequence response element (ISRE), followed by NFκB and STAT3, which were all up-regulated in AH. FAT10 was only reported in human and mouse specimens but plays critical role for the development of alcoholic hepatitis. Flavanone derivatives of milk thistle inhibit TNFα/IFNγ, NFκB, and STAT3, then inhibit the expression of FAT10. NFκB is the key nodal hub of the IFNα/TNFα-response genes. Studies on Silibinin and other milk thistle derivatives to treat AH confirms that overexpressed FAT10 is the major key molecule in these networks.

Keywords: FAT10; alcohol toxicity; alcoholic hepatitis; low-dose effects; molecular mechanisms; pathogenesis.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge