中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plants 2019-Dec

Transcriptomic Analysis of Dark-Induced Senescence in Bermudagrass (Cynodon dactylon).

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Jibiao Fan
Yanhong Lou
Haiyan Shi
Liang Chen
Liwen Cao

關鍵詞

抽象

Leaf senescence induced by prolonged light deficiency is inevitable whenever turfgrass is cultivated in forests, and this negatively influences the survival and aesthetic quality of the turfgrass. However, the mechanism underlying dark-induced senescence in turfgrass remained obscure. In this study, RNA sequencing was performed to analyze how genes were regulated in response to dark-induced leaf senescence in bermudagrass. A total of 159,207 unigenes were obtained with a mean length of 948 bp. The differential expression analysis showed that a total of 59,062 genes, including 52,382 up-regulated genes and 6680 down-regulated genes were found to be differentially expressed between control leaves and senescent leaves induced by darkness. Subsequent bioinformatics analysis showed that these differentially expressed genes (DEGs) were mainly related to plant hormone (ethylene, abscisic acid, jasmonic acid, auxin, cytokinin, gibberellin, and brassinosteroid) signal transduction, N-glycan biosynthesis, and protein processing in the endoplasmic reticulum. In addition, transcription factors, such as WRKY, NAC, HSF, and bHLH families were also responsive to dark-induced leaf senescence in bermudagrass. Finally, qRT-PCR analysis of six randomly selected DEGs validated the accuracy of sequencing results. Taken together, our results provide basic information of how genes respond to darkness, and contribute to the understanding of comprehensive mechanisms of dark-induced leaf senescence in turfgrass.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge