中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2020-Sep

Viral Perturbation of Alternative Splicing of a Host Transcript Benefits Infection

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Kaitong Du
Tong Jiang
Hui Chen
Alex Murphy
John Carr
Zhiyou Du
Xiangdong Li
Zaifeng Fan
Tao Zhou

關鍵詞

抽象

Pathogens disturb alternative splicing patterns of infected eukaryotic hosts. However, in plants it is unknown if this is incidental to infection or represents a pathogen-induced remodeling of host gene expression needed to support infection. Here, we compared changes in transcription and protein accumulation with changes in transcript splicing patterns in maize (Zea mays) infected with the globally-important pathogen sugarcane mosaic virus (SCMV). Our results suggested that changes in alternative splicing play a major role in determining virus-induced proteomic changes. Focusing on maize phytoene synthase 1 (ZmPSY1), which encodes the key regulatory enzyme in carotenoid biosynthesis, we found that although SCMV infection decreases total ZmPSY1 transcript accumulation, the proportion of splice variant T001 increases by later infection stages so that ZmPSY1 protein levels are maintained. We determined that ZmPSY1 has two leaf-specific transcripts, T001 and T003, distinguished by differences between the respective 3'-untranslated regions (UTRs). The shorter 3'-UTR of T001 makes it the more efficient mRNA. Nonsense ZmPSY1 mutants or virus-induced silencing of ZmPSY1 expression suppressed SCMV accumulation, attenuated symptoms, and decreased chloroplast damage. Thus, ZmPSY1 acts as a pro-viral host factor that is required for virus accumulation and pathogenesis. Taken together, our findings reveal that SCMV infection-modulated alternative splicing ensures that ZmPSY1 synthesis is sustained during infection, which supports efficient virus infection.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge