中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Functional Plant Biology 2015-Jun

Whole-plant respiration and its temperature sensitivity during progressive carbon starvation

只有註冊用戶可以翻譯文章
登陸註冊
鏈接已保存到剪貼板
Martijn Slot
Kaoru Kitajima

關鍵詞

抽象

Plant respiration plays a critical role in the C balance of plants. Respiration is highly temperature sensitive and small temperature-induced increases in whole-plant respiration could change the C balance of plants that operate close to their light-compensation points from positive to negative. Nonstructural carbohydrates are thought to play an important role in controlling respiration and its temperature sensitivity, but this role has not been studied at the whole-plant level. We measured respiration of whole Ardisia crenata Sims. seedlings and tested the hypothesis that darkness-induced C starvation would decrease the temperature sensitivity of whole-plant respiration. Compared with control plants, sugar and starch concentrations in darkened plants declined over time in all organs. Similarly, whole-plant respiration decreased. However, the temperature sensitivity of whole-plant respiration, expressed as the proportional increase in respiration per 10°C warming (Q10), increased with progressive C starvation. We hypothesise that growth respiration was suppressed in darkened plants and that whole-plant respiration represented maintenance respiration almost exclusively, which is more temperature sensitive. Alternatively, changes in the respiratory substrate during C starvation or increased involvement of alternative oxidase pathway respiration may explain the increase in Q10. Carbohydrates are important for respiration but it appears that even in C-starved A. crenata plants, carbohydrate availability does not limit respiration during short-term warming.

加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge