頁 1 從 72 結果
In higher plants, beta-glucosidases belonging to glycoside hydrolase (GH) Family 1 have been implicated in several fundamental processes including lignification. Phylogenetic analysis of Arabidopsis thaliana GH Family 1 has revealed that At1g61810 (BGLU45), At1g61820 (BGLU46), and At4g21760 (BGLU47)
In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked
A new Escherichia coli gene, bgIX, encoding a beta-D-glucosidase (EC 3.2.1.21) has been characterized. The bgIX gene is located adjacent to the dld gene at 47.8 min or 2225 kb on the E. coli chromosome. The sequence of a 2.6 kb DNA fragment from this region revealed a large open reading frame
We have previously isolated a phosphate starvation-response (psr) cDNA clone, psr3.1, from Brassica nigra which encodes a beta-glucosidase. Southern blots of Arabidopsis thaliana genomic DNA probed with the psr3.1 cDNA indicated that this gene exists as a single locus. A genomic library of A.
Since At2g25630 is an intronless gene with a premature stop codon, its cDNA encoding the predicted mature beta-glucosidase isoenzyme was synthesized from the previously isolated Arabidopsis thaliana genomic DNA. The stop codon was converted to a sense codon by site-directed mutagenesis. The native
BACKGROUND
Glycosyl hydrolase family 1 (GH1) beta-glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GH1
The glycoside hydrolase family 1 members Os4BGlu14, Os4BGlu16, and Os4BGlu18 were proposed to be rice monolignol β-glucosidases. In vitro studies demonstrated that the Os4BGlu16 and Os4BGlu18 hydrolyze the monolignol glucosides coniferin and syringin with high efficiency compared to other
Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases
The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of
Kaempferol and quercetin 3-O-β-glucoside-7-O-α-rhamnoside (K3G7R and Q3G7R, respectively) are major flavonol bisglycosides accumulating in Arabidopsis thaliana with synergistic abiotic stresses (i.e., nitrogen deficiency and low temperature, NDLT). However, these molecules disappear rapidly during
Asparagine-linked glycosylation (N-glycosylation) is one of the most important protein modifications in eukaryotes, affecting the folding, transport, and function of a wide range of proteins. However, it is still less known about the roles of N-glycosylation in the development of stomata in plants.
Piriformospora indica, an endophyte of the Sebacinaceae family, promotes growth and seed production of many plant species, including Arabidopsis. Growth of a T-DNA insertion line in PYK10 is not promoted and the plants do not produce more seeds in the presence of P. indica, although their roots are
Plants develop various ER-derived structures with specific functions. The ER body found in Arabidopsis thaliana is a spindle-shaped structure. ER bodies accumulate in epidermal cells in seedlings or are induced by wounding. The molecular mechanisms underlying the formation of the ER body remained
The endoplasmic reticulum (ER) body is an ER-related organelle that accumulates high levels of PYK10, a beta-glucosidase with an ER retention signal. Constitutive ER bodies are present in the epidermal cells of cotyledons, hypocotyls and roots of young Arabidopsis seedlings, but absent in rosette
Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under