中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

blumea arfakiana/reductase

鏈接已保存到剪貼板
文章臨床試驗專利權
5 結果

[Analysis of metabolic pathway of terpenoids in Blumea balsamifera].

只有註冊用戶可以翻譯文章
登陸註冊
In order to provide a theoretical basis for the regulation of active ingredient, the terpenoids metabolic pathway and specific enzymes in Blumea balsamifera are investigated. Basing on transcriptome information, B. balsamifera terpenoids metabolic pathway was analyzed in KEGG data base. Four
Cell cultures of Blumea malcolmii Hook., developed in the laboratory, rapidly decolorized textile industry effluent along with a variety of dyes with diverse structural properties. Most rapid decolorization was observed in case of Malachite Green (93.41% decolorization within 24 h). The cells were
Tissue cultured shrub plants of Blumea malcolmii were found to decolorize Malachite green, Red HE8B, Methyl orange, Reactive Red 2 and Direct Red 5B at 20 mg L(-1) concentration to varying extent within three days. A significant induction in the activities of lignin peroxidase, tyrosinase, DCIP
In vitro culture plants of Typhonium flagelliforme were found to decolorize a variety of dyes, including Malachite Green, Red HE 8B, Methyl Orange, Reactive Red 2, Direct Red 5B (DR5B), Red HE 7B, Golden Yellow HER, Patent Blue, and Brilliant Blue R (BBR), to varying extents within 4 days. The
Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge