頁 1 從 179 結果
Akt (Protein kinase B, PKB), a serine/threonine kinase, plays a critical role in cell development, growth, and survival. Akt phosphorylation mediates a neuroprotective effect against ischemic injury. Recently, a protein-tyrosine phosphatase-1B (PTP1B) inhibitor (KY-226) was developed to elicit
Though the potential use of adenosine as a neuroprotective agent has long been realized, there are currently no adenosine-based therapies for the prevention or treatment of cerebral ischemia and reperfusion injury. Prostatic acid phosphatase (PAP), an enzyme that has long served as a diagnostic
Curcumin provides various biological effects through its anti-inflammatory and antioxidant properties. Moreover, curcumin exerts a neuroprotective effect against ischemic condition-induced brain damage. Protein phosphatase 2A (PP2A) is a ubiquitous serine and threonine phosphatase with various cell
BACKGROUND
The regulation of protein phosphorylation requires a balance in the activity of protein kinases and protein phosphatases. Our previous data indicates that Src can increase ERK activity through Raf kinase in response to ischemic stimuli. This study examined the molecular mechanisms by
Rosiglitazone, a synthetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist, prevents cell death after cerebral ischemia in animal models, but the underlying mechanism has not been clarified. In this study, we examined how rosiglitazone protects neurons against ischemia. Mice treated
Ins(1,4,5)P3 3-kinase and 5-phosphatase are important enzymes responsible for the metabolism of Ins(1,4,5)P3, a second messenger for mobilization of intracellular Ca2+ stores. Focal cerebral ischemia induced in Long Evans rats through occlusion of the right middle cerebral artery (MCA) and both
OBJECTIVE
To study the changes and mechanisms of protein-tyrosine kinase (PTK) and protein-tyrosine phosphatase (PTP) activities in the hippocamal synaptosome following cerebral ischemia/reperfusion (I/R) in gerbil.
METHODS
Transient (15 min) global ischemia was produced by bilateral carotid artery
Extracellular-signal-regulated kinase (ERK) undergoes rapid inactivation following the intense activation evoked by cerebral ischemia and reperfusion. However, the precise mechanism of this inactivation has not been elucidated. To investigate how phosphatases regulate the ERK cascade following
The c-Jun N-terminal kinase (JNK) undergoes complete inactivation following the intense activation induced by cerebral ischemia and reperfusion in rat hippocampi. This study examines the molecular mechanism underlying JNK dephosphorylation and inactivation evoked by dual-specificity phosphates
It is well documented that exitotoxicity induced by N-methyl-D-aspartate (NMDA) receptor activation plays a pivotal role in delayed neuronal death in the hippocampal CA1 region after transient global ischemia. However, the effect of gamma-aminobutyric acid (GABA) receptor activation is uncertain in
Striatal enriched protein tyrosine phosphatase (STEP) acts in the central nervous system to dephosphorylate a number of important proteins involved in synaptic function including ERK and NMDA receptor subunits. These proteins are also linked to stroke, in which cerebral ischemia triggers a complex
In this study, we investigated the effects of protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) on the tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2A (NR2A) and the interactions among NR2A, postsynaptic density protein 95 (PSD-95), Fyn/Src after brain
Alkaline phosphatase (ALP) has been implicated to be associated with poor outcome in ischemic stroke patients, yet its role in aneurysmal subarachnoid hemorrhage (aSAH) patients is unknown. The current study aimed to investigate the on-admission and short-term variation trend of ALP BACKGROUND Ischemia-reperfusion injury is caused by a blood reperfusion injury in ischemic brain tissue, and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. MiR-122 is closely related to ischemia-reperfusion injury in the myocardium, kidney, and
Protein phosphatase 2A (PP2A) is a serine and threonine protein phosphatase that regulates cell cycle progression and apoptosis. PP2A is composed of various subunits. Among these subunits, subunit B plays an important role in the modulation of PP2A function in the brain. This study investigated PP2A