頁 1 從 157 結果
Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been
Verification of abstinence from cannabinoid use after initial identification requires documentation of falling quantitative levels of urinary 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) over an extended time period. We present a case in which normalization of quantitative
Over the past years, use of synthetic cannabinoids has become increasingly popular. To draw the right conclusions regarding new intake of these substances in situations of repeated urinary drug testing, knowledge of their elimination rate in urine is essential. We report data from consecutive urine
In military courts of law, the good soldier defense is often used by the defendant to explain the presence of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid in urine (hereafter referred to as THCA) above the Department of Defense (DOD) established limit of 15 ng/mL. The defense will contend
The identification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in hair represents an exceptional forensic analytical challenge due to low target concentrations in a complex matrix. Several dedicated techniques [gas chromatography-negative chemical ionization-tandem mass
11-Nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid ethyl ester (THC-COOEt) can be presumed to be a mixed metabolite formed during combined consumption of cannabinoids and alcohol. In order to examine this hypothesis, THC-COOEt and its deuterated analogue D(3)-THC-COOEt were synthesized as
Data from five years of gas chromatographic/mass spectrometric (GC/MS) quantitation of blood, or blood and matched (i.e. concurrently collected) urine specimens, for cannabinoids have been used for two distinct evaluations. In the present study, we assessed the relationship of blood delta
The determination of the marijuana metabolite 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THCA) in oral fluid specimens is described for the first time using a Quantisal oral fluid collection device and gas chromatography with single-quadrupole mass spectrometric detection. Oral fluid
The main active cannabis (marijuana and hashish) derivative delta 9-tetrahydrocannabinol is, in vivo, transformed and excreted mainly as 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) and its glucuronide. The method presented here allows the confirmation of the presence of THC-COOH
The detection of the marijuana metabolite 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in oral fluid specimens is described, and its contribution to an immunoassay for the detection of cannabinoids is investigated. Oral fluid specimens, screened using an enzyme-linked
Results obtained from three commercial immunoassay kits, Abuscreen, TDx, and EMIT, commonly used for the initial test of urine cannabinoids (and metabolites) were correlated with the 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (9-THC-COOH) concentration as determined by GC/MS. Correlation
By means of gas chromatography with high resolution mass spectrometry (GC-HRMS), ultra-high performance liquid chromatography in combination with high resolution tandem mass spectrometry (UHPLC-HRMS), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR),
We developed and validated an ultra-high-pressure liquid chromatography-tandem mass spectrometry method to identify and quantify 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide in hair of cannabis consumers. After hair washing with methyl alcohol and diethyl ether and subsequent
Current technology establishes marijuana use based upon detection of the pharmacologically inactive cannabinoid metabolite (11-nor-delta9-carboxy-tetrahydrocannabinol-9-carboxylic acid, THC-COOH) in urine. No accurate prediction of time of use is possible because THC-COOH has a half-life of 6 days.
We report the structure-activity relationships, design, and synthesis of the novel cannabinoid type 1 (CB1) receptor antagonist 3a (CP-945,598). Compound 3a showed subnanomolar potency at human CB1 receptors in binding (Ki = 0.7 nM) and functional assays (Ki = 0.12 nM). In vivo, compound 3a reversed