中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cereus giganteus/tyrosine

鏈接已保存到剪貼板
文章臨床試驗專利權
13 結果
The function of the hydroxyl group of the tyrosine residue readily nitrated by tetranitromethane (tyrosine-105) in the RTEM plasmid-derived beta-lactamase (penicillinase; penicillin amido beta-lactam-hydrolase, EC 3.5.1.6) from E. coli and in Bacillus cereus beta-lactamase I has been investigated by

Alkaloid production by callous tissue cultures of Cereus peruvianus (Cactaceae).

只有註冊用戶可以翻譯文章
登陸註冊
The morphologically undifferentiated cells of nonregenerant callous tissue of Cereus peruvianus cultured in the original medium and in medium supplemented with tyrosine were used as an alkaloid source. Comparison of alkaloid production by C. peruvianus plants and by callous tissues indicated that
The rate limiting step in DNA biosynthesis is the reduction of ribonucleotides to form the corresponding deoxyribonucleotides. This reaction is catalyzed by ribonucleotide reductases (RNRs) and is an attractive target against rapidly proliferating pathogens. Class I RNRs are binuclear non-heme iron
Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains
The intentional contamination of buildings, e.g. anthrax in the bioterrorism attacks of 2001, demonstrated that the population can be affected rapidly and lethally if the appropriate treatment is not provided at the right time. Molecular approaches, primarily involving PCR, have proved useful in
The factors involved in the pathogenesis of Bacillus cereus (B. cereus) in non-gastrointestinal diseases are poorly investigated. Some researchers suggest that B. cereus proteases may be involved in these illnesses. The aim of this work was to purify and characterize a protease isolated from a
Small acid-soluble proteins (SASPs) are located in the core region of Bacillus spores and have been previously demonstrated as reliable biomarkers for differentiating Bacillus anthracis and Bacillus cereus. Using MS and MS-MS analysis of SASPs further phylogenetic correlations among B. anthracis and
The conversion of ketomethiobutyrate to methionine has been previously examined in a number of organisms, wherein the aminotransferases responsible for the reaction have been found to be members of the Ia subfamily (L. C. Berger, J. Wilson, P. Wood, and B. J. Berger, J. Bacteriol. 183:4421-4434,

Study of inhibition of outgrowth in Bacillus cereus T by ethyl picolinate.

只有註冊用戶可以翻譯文章
登陸註冊
The effects of ethyl picolinate on germination, outgrowth, and sporulation of Bacillus cereus T were studied in a synthetic medium containing glucose. Ethyl picolinate specifically inhibited at two stages, outgrowth and sporulation. The initiation of germination and cell division was not affected.

Chemical composition of exosporium from spores of Bacillus cereus.

只有註冊用戶可以翻譯文章
登陸註冊
Homogeneous fragments of exosporium were extricated in centigram amounts from dormant spores of Bacillus cereus and analyzed for intrinsic constituents. The membrane proved to be chemically complex but not unique, consisting mainly of protein (52%), amino and neutral polysaccharides (20%), lipids
Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with
Plipastatins are new inhibitors of phospholipase A2 produced by Bacillus cereus BMG302-fF67. Structures of the plipastatins have been determined by UV, mass and NMR spectrometries and chemical degradation. The carboxyl group of the C-terminal L-isoleucine of plipastatinic acid has been shown to form
Glycosyltransferase-1 from Bacillus cereus (BcGT1) catalyzes a reaction that transfers a glucosyl moiety to flavonoids, such as quercetin, kaempferol, and myricetin. The enzymatic glucosidation shows a broad substrate specificity when the reaction is catalyzed by wild-type BcGT1. Preliminary assays
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge