中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cystathionine/arabidopsis thaliana

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 42 結果
The single cystathionine β-synthase (CBS) pair proteins from Arabidopsis thaliana have been identified as being a redox regulator of the thioredoxin (Trx) system. CBSX1 and CBSX2, which are two of the six Arabidopsis cystathione β-synthase domain-containing proteins that contain only a single CBS
Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber
Cystathionine beta-lyase, the second enzyme involved in the methionine biosynthetic pathway in plants, catalyses the synthesis of homocysteine from cystathionine. A cDNA encoding cystathionine beta-lyase was cloned from an Arabidopsis thaliana expression library by complementation of an Escherichia
Cystathionine gamma-synthase (CGS) catalyses the first committed step in methionine (Met) biosynthesis in higher plants. Stability of CGS1 mRNA encoding CGS in Arabidopsis thaliana is regulated by negative feedback in response to Met application and the amino acid sequence of CGS itself acts in cis
Cystathionine beta-lyase is a key enzyme in sulphur metabolism that catalyses the second reaction specific for methionine biosynthesis, the pyridoxal 5'-phosphate-dependent beta-cleavage of cystathionine to produce homocysteine. To obtain insight into the biochemical properties of the plant enzyme,
Expression of the gene for cystathionine gamma-synthase (CGS), which catalyzes the key step of methionine biosynthesis, is feedback regulated at the level of mRNA stability. The first exon polypeptide of CGS is suggested to be involved in this regulation and amino acid sequence alterations caused by
A cDNA clone, CGS1, encoding cystathionine gamma-synthase (CGS) from Arabidopsis thaliana was selected by complementation of CGS mutant strain of Escherichia coli (metB). Cells expressing CGS1 can grow on medium lacking Met and contain CGS enzyme activity. Genomic DNA blot analysis of A. thaliana
Cystathionine gamma-synthase catalyses the first reaction specific for methionine biosynthesis in plants, the gamma-replacement of the phosphoryl substituent of O-phosphohomoserine by cysteine. A cDNA encoding cystathionine gamma-synthase from Arabidopsis thaliana has been cloned and used to
Cystathione beta-synthase domain-containing protein 2 (CDCP2) from Arabidopsis thaliana has been overexpressed and purified to homogeneity. As an initial step towards three-dimensional structure determination, crystals of recombinant CDCP2 protein have been obtained using polyethylene glycol 8000 as
Cystathionine gamma-synthase, the first committed enzyme of methionine biosynthesis in higher plants, is encoded by the CGS1 gene in Arabidopsis thaliana. We have shown previously that the stability of the CGS1 mRNA is negatively regulated in response to methionine application [Chiba, Y., Ishikawa,
Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine-gamma-synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was
In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways,
S-Methylmethionine (SMM) was suggested previously to participate in the metabolism of methionine (Met) in seeds. To further reveal its roles, we had previously produced transgenic Arabidopsis (Arabidopsis thaliana) RNA interference (RNAi) seeds with lower transcript expression of CYSTATHIONINE
Chloroplast transit peptide sequences (cTPs) located in the N-terminal region of nuclear-encoded chloroplast proteins are essential for their sorting, and are generally cleaved from the proteins after their import into the chloroplasts. The Arabidopsis thaliana cystathionine γ-synthase (CGS), the
To gain insight into the evolution of the methionine biosynthesis pathway, in vivo complementation tests were performed. The substrate specificity of three enzymes that intrinsically use different homoserine-esterified substrates and have different sulfur assimilation pathways was examined: two
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge