中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

decarboxylase/glycine max

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 22 結果
Unlike other eukaryotes, which synthesize polyamines (PA) only from ornithine, plants possess an additional pathway utilizing arginine as a precursor. In this study, we have identified cDNA clones coding for a Glycine max ornithine decarboxylase (ODC, EC 4.1.1.7) and an arginine decarboxylase (ADC,
Glutamate decarboxylase (GAD) is an enzyme that catalyzes the production of gamma-amino butyric acid (GABA) from glutamate through a decarboxylation reaction. A full-length cDNA encoding glutamate decarboxylase (GmGAD1) was isolated from germinating soybean seeds (Glycine max [L.] Merr.). The GmGAD1
The activity of lysine decarboxylase was studied in 3-day-old soybean (Glycine max (L.) Meer cv. Sakai) seedlings also in relation to light conditions. Lysine decarboxylase activity was mainly localized in the roots and to a lesser extent in the hypocotyls and was detectable in both the soluble and
Lysine decarboxylase (EC 4.1.1.18) was purified 364-fold from 2-day-old soybean (Glycine max) axes. The enzyme was a monomeric protein having a molecular mass of 95,000 Da and an isoelectric point of 4.0. The K(m) for L-lysine was 1.17 mM. The optimal temperature and pH of the enzyme were 37 degrees
Arginine decarboxylase (EC 4.1.1.19) was purified from soybean, Glycine max, hypocotyls by a procedure which includes ammonium sulfate fractionation, acetone precipitation, gel filtration chromatography, and affinity chromatography. Using this procedure, ADC was purified to one band in
Pyruvate decarboxylase (PDC, EC 4.1.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) are responsible for the anaerobic production of acetaldehyde and ethanol in higher plants. In developing soybean embryos, ADH activity increased upon imbibition and then declined exponentially with development, and
We cloned a rice cDNA encoding a putative arginine decarboxylase (ADC) protein, a key enzyme involved with putrescine (Put) biosynthesis in plants. The isolated full-length cDNA (OsADC1) contains an insert consisting of 2451 bp. The longest open reading frame within encodes a putative protein of 702

Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase.

只有註冊用戶可以翻譯文章
登陸註冊
Recently, we provided preliminary evidence for calcium (Ca2+)/calmodulin (CaM) stimulation of plant glutamate decarboxylase (GAD; EC 4.1.1.15). In the present study, a detailed characterization of the phenomenon is described. GAD was partially purified from various soybean (Glycine max L. Merr.)
Active polyamine biosynthesis occurs in the embryonic axis, but not in the cotyledons, during germination of Glycine max (L.) cv Williams seeds and subsequent growth of the young seedlings. The hypocotyl and radicle synthesize and accumulate considerable amounts of cadaverine (Cad) and putrescine

Purification of S-adenosylmethionine decarboxylase from soybean.

只有註冊用戶可以翻譯文章
登陸註冊
S-Adenosylmethionine decarboxylase (EC 4.1.1.19) was purified to homogeneity from the cytosol of soybean (Glycine max) axes by ammonium sulfate fractionation, DEAE-Sepharose and methylglyoxalbis(guanylhydrazone)-Sepharose 6B chromatographies. The enzyme was free from diamine oxidase activity. The

A new S-adenosylmethionine decarboxylase from soybean axes.

只有註冊用戶可以翻譯文章
登陸註冊
A new active S-adenosylmethionine decarboxylase (EC 4.1.1.50) (SAMDC II) was extracted from soybean (Glycine max) axes. The enzyme was purified to homogeneity by ammonium sulfate fractionation, DEAE-Sepharose and methylglyoxalbis(guanylhydrazone) (MGBG)-Sepharose 6B chromatographies. The molecular
Arginine decarboxylase (ADC) is one of the key enzymes in the biosynthesis of putrescine in plants. The regulation of its activity depends on the physiological condition, developmental stage, and type of tissue. We have cloned ADC cDNA from soybean (Glycine max) hypocotyls to understand the
When the polyamine content of soybean (Glycine max) seeds was examined during the early stages of germination, the major polyamine in the cotyledons was found to be spermidine, followed by spermine; while very low concentrations of cadaverine were found. In the embryonic axes, however, cadaverine
Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides,
We investigated the effects of exogenous spermidine (Spd) on the physiological status, γ-aminobutyric acid (GABA) synthase activity, and gene expressions in germinating soybeans under NaCl stress. The results show that Spd significantly increases sprout growth and biomass, decreases malonaldehyde
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge