中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

endolysin/pneumonia

鏈接已保存到剪貼板
文章臨床試驗專利權
8 結果
OBJECTIVE Community-acquired pneumonia is a very common infectious disease associated with significant morbidity and mortality. Streptococcus pneumoniae is the predominant pathogen in this disease, and pneumococcal resistance to multiple antibiotics is increasing. The recently purified bacteriophage
SAL200 is derived from a phage endolysin and is a novel candidate drug for the treatment of Staphylococcus aureus infection. We investigated the efficacy of the recombinant endolysin SAL200 in a lethal murine pneumonia model. Lethal pneumonia was established by intranasally administering a
OBJECTIVE Pneumonia is associated with a high morbidity and mortality worldwide. Streptococcus pneumoniae remains the most common cause of pneumonia, and pneumococcal antibiotic resistance is increasing. The purified bacteriophage endolysin Cpl-1 rapidly and specifically kills pneumococci. We tested
The emergence and rapid spread of multidrug-resistant bacteria has induced intense research for novel therapeutic approaches. In this study, the Acinetobacter baumannii bacteriophage D2 (vB_AbaP_D2) was isolated, characterized and sequenced. The endolysin of bacteriophage D2, namely Abtn-4, contains
Almost all bacteria secrete spherical membranous nanoparticles, also referred to as membrane vesicles (MVs). A variety of MV types exist, ranging from 20 to 400 nm in diameter, each with their own formation routes. The most well-known vesicles are the outer membrane vesicles (OMVs) which are formed

A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa.

只有註冊用戶可以翻譯文章
登陸註冊
The global increase in multidrug resistant (MDR) bacteria has led to phage therapy being refocused upon. A novel endolysin, LysPA26, containing a lysozyme-like domain, was screened against Pseudomonas aeruginosa in this study. It had activity against MDR P. aeruginosa without pretreatment with an
Streptococcus pneumoniae is a leading pathogen for bacterial pneumonia, which could be treated with bacteriophage lysins harboring a conserved choline binding module (CBM). Such kind of lysins regularly function as choline-recognizing dimers. Previously, we reported a pneumococci-specific
Background: New strategies are urgently needed to deal with the growing problem of multidrug-resistant bacterial pathogens. As the natural viruses against bacteria, recently, bacteriophages have received particular attention. Here, we
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge