中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

epicatechin 3 gallate/camellia

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 127 結果
Green tea has attracted great interest as a cancer prevention agent. Interactions of tea polyphenols with serum albumin may influence the efficacy of drugs. The interactions of (-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate (ECG), and tegafur (TF) alone or in combination with human
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver
At concentrations found in human after ingestion of 1-2 cups of green tea, Epicatechin-3-gallate (ECG) modulates Na/K-ATPase conformation and activity. Akin to ouabain, an archetypal Na/K-ATPase ligand of the cardiotonic steroids (CTS) family, ECG also activates PKCɛ translocation and increases the
(-)-Epicatechin-3-gallate (ECG) is a polyphenolic compound similar to (-)-epigallocatechin-3-gallate (EGCG) which is abundant in green tea. Numerous workers have proposed that EGCG protects epidermal cells against UVB-induced damage. However, little has been known about whether ECG protects
(-)-Epicatechin-3-gallate (ECG), a polyphenol extracted from green tea, has been proposed as an effective compound for improving cardiac contractility. However, the therapeutic potential of ECG on the treatment of arrhythmia remains unknown. We investigated the direct actions of ECG on the
The green tea polyphenol catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) were synthesized enantioselectively via a Sharpless hydroxylation reaction followed by a diastereoselective cyclization. Their potencies to inhibit the proteasome activity were measured. The unnatural enantiomers were
OBJECTIVE The effect of epicatechin-3-gallate (ECG), a polyphenol that is present in green tea, on doxorubicin (DOX) cytotoxicity in H9C2 cardiomyocytes and its underlying mechanisms were investigated. RESULTS Pretreatment with ECG (20 and 30 μM) significantly increased DOX-induced apoptosis to
Inhibitors of 5 alpha-reductase may be effective in the treatment of 5 alpha-dihydrotestosterone-dependent abnormalities, such as benign prostate hyperplasia, prostate cancer and certain skin diseases. The green tea catechins, (-)epigallocatechin-3-gallate and (-)epicatechin-3-gallate, but not
The hepatocyte growth factor (HGF) receptor, Met, is a strong prognostic indicator of breast cancer patient outcome and survival, suggesting that therapies targeting Met may have beneficial outcomes in the clinic. (-)-Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been
Epidemiological as well as experimental evidence exists in support of chemopreventive and anticancer properties of green tea and its constituents. The gallocatechin, epicatechin-3-gallate is a major polyphenol present in green tea, shown responsible for these effects. Plant-derived polyphenolic
Epithelial-to-mesenchymal transition (EMT) and invasion potential have been considered as essential factors in cancer metastasis, which is the major cause of cancer death. EMT is a multi-step process that involves gain invasion, cytoskeleton change, cell adhesion, and proteolytic extracellular
(-)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been extensively studied and shown to be a powerful antioxidant protecting skin cells against photodamage. In this study, however, we demonstrated that another gallated catechin, (-)-epicatechin-3-gallate (ECG), was also able to
Tea catechins, the main bioactive polyphenols in green tea, are well known for their health promoting effects. Previous studies have shown that gallocatechin-3-gallate (GCG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) exerted strong inhibitory effects on mushroom tyrosinase
The consumption of green tea has long been associated with a reduced risk of cancer development. (-)-Epicatechin-3-gallate (ECG) or (-)-epigallocatechin-3-gallate (EGCG) are the major antioxidative polyphenolic compounds of green tea. They have been shown to exert growth-inhibitory potential of
(-)-Epicatechin gallate (ECG) is one of the flavonoids in green tea, which has been demonstrated to have cancer-preventive properties in many model systems. However, the extent and mechanisms of accumulation of these flavonoids in cells is unknown. The objectives of this study were to determine the
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge