中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ethylene/arabidopsis thaliana

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 1199 結果
This work aims at identifying the effects of ethylene on the response of Arabidopsis thaliana root system to cadmium chloride (CdCl2) stress. Two ethylene-insensitive mutants, ein2-5 and ein3-1eil1-1, were subjected to (25, 50, 75, and 100 μM) CdCl2 concentrations, from which 75 μM concentration
The analysis of expression patterns of transcription-factor genes will be the basis for a better understanding of their biological functions in plants. In this study, we designed and developed an oligo-DNA macroarray consisting of gene-specific probes of 60-65 nucleotides for 288
Genetic approaches using Arabidopsis thaliana aimed at the identification of mutations affecting events involved in auxin signalling have usually led to the isolation of auxin-resistant mutants. From a selection screen specifically developed to isolate auxin-hypersensitive mutants, one mutant line
The transition from vegetative growth to flowering is the most drastic change in plant development. In order to examine the involvement of ethylene in growth transition, we compared the development of ethylene-related mutants, eto1, etr1, ein2-1 and ein3-1, with the wild type (WT) in Arabidopsis
Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane
OBJECTIVE Root hair density (i.e. the number of root hairs per unit root length) in Arabidopsis thaliana varies among individual plants in response to different nutrient stresses. The degree of such variation, defined as inequality, serves as a unique indicator of the uniformity of response within a
The plant hormone ethylene has been hypothesized to play roles both in disease resistance and in disease susceptibility. These processes were examined by using isogenic virulent and avirulent bacterial pathogens and mutants of Arabidopsis thaliana that were altered in ethylene physiology.
• Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator
Upon herbivore attack, plants activate an indirect defense, that is, the release of a complex mixture of volatiles that attract natural enemies of the herbivore. When plants are simultaneously exposed to two herbivore species belonging to different feeding guilds, one herbivore may interfere with
Although touch responses of plant roots are an important adaptive behavior, the molecular mechanism remains unclear. We have developed a bioassay for measuring root-bending responses to physical hardness in Arabidopsis thaliana seedlings. Our test requires a two-layer solid medium. Primary roots
An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene

Ethylene negatively regulates EXPA5 expression in Arabidopsis thaliana.

只有註冊用戶可以翻譯文章
登陸註冊
We examined the effects of ethylene on the expression of Arabidopsis expansins (AtEXPs). Among the AtEXPs tested, transcription of the AtEXPA5 gene was reduced most by exogenous ethylene. 2-Aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, increased AtEXPA5 transcription. Ethylene

Genetic analysis of ethylene responses in Arabidopsis thaliana.

只有註冊用戶可以翻譯文章
登陸註冊
The plant hormone ethylene mediates a number of developmental processes and responses to environmental stress in higher plants. Our research efforts over the last three years have been focused on developing an understanding of the molecular basis of ethylene action in plants. To this end, we have
The signal receiver domain of ETR1, an ethylene receptor from Arabidopsis thaliana, has been subcloned and expressed in E. coli and purified by affinity chromatography. Crystals of both native and a selenomethionine-substituted form of the receiver domain have been obtained. Native crystals grew in
The ethylene forming enzyme (EFE) is a key factor in ethylene biosynthesis. To understand better the regulation of ethylene biosynthesis in vegetative tissues, we set out to isolate and characterize a complementary DNA (cDNA) encoding the EFE from Arabidopsis thaliana. An A. thaliana cDNA library
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge