中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

farnesol/breast neoplasms

鏈接已保存到剪貼板
文章臨床試驗專利權
8 結果
Anti-cancer effects of farnesol are well established, although mechanisms mediating these effects are not fully understood. Since farnesol has been shown to regulate gene transcription through activation of the farnesoid X receptor and the peroxisome proliferator-activated receptors-alpha and
Farnesoid X receptor (FXR) is a metabolic nuclear receptor expressed in the liver and traditionally considered as a bile acid sensor. Yet, FXR has been recently demonstrated in other tissues and cells, such as the kidneys, the adrenals, and arterial smooth muscle cells. Immunohistochemical data
Treatment with HMG CoA reductase inhibitors, i.e. 25-hydroxycholesterol and mevinolin, inhibited cell growth of the human breast cancer cell line MDA231 in a cell cycle-specific manner by blocking progression through G1. Since 25-hydroxycholesterol, as distinguished from mevinolin, also inhibits
Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in
The combination of anticancer drugs used in the clinic has been based upon empiricism, and the potential permutations of currently available drugs overwhelm the clinical trials system. Recently, investigators have suggested that the combination of a blockade of vital signal transduction pathways in
Increasing evidence is accumulating that zoledronic acid (ZOL), a nitrogen-containing bisphosphonate (N-BP), is able to affect tumor cells by inhibiting the enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway (MVP). The consequent accumulation of unprenylated proteins is believed
Breast and prostate cancer preferentially metastasize in the skeleton, inducing locally increased bone resorption by osteoclasts. Bisphosphonates (BPs), potent inhibitors of osteoclasts and bone resorption, are able to reduce metastatic bone lesions, but the metastasis-related cellular target
Mammalian cells can use exogenous isoprenols to generate isoprenoid diphosphate substrates for protein isoprenylation, but the mechanism, efficiency, and biological importance of this process are not known. We developed mass spectrometry-based methods using chemical probes and newly synthesized
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge