中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glucan/zea mays

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 89 結果
Two major alpha-glucan phosphorylases (I and II) from leaves of the C(4) plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by
Excised Zea mays L. embryos were cultured on Linsmaier and Skoog medium. Coleoptiles were sampled at regular intervals and the length, fresh weight, cell wall weight, and cell wall neutral sugar composition were determined. A specific beta-d-glucanase from Bacillus subtilis was used to determine the
β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of

Several thaumatin-like proteins bind to beta-1,3-glucans.

只有註冊用戶可以翻譯文章
登陸註冊
Pathogenesis-related proteins from intercellular fluid washings of stressed barley (Hordeum vulgare L.) leaves were analyzed to determine their binding to various water-insoluble polysaccharides. Three proteins (19, 16, and 15 kD) bound specifically to several water-insoluble beta-1,3-glucans.
Transcriptional regulation of genes encoding chitin synthases (CHS) and β-1,3-glucan synthase (GLS) from Ustilago maydis was studied. Transcript levels were measured during the growth curve of yeast and mycelial forms, in response to ionic and osmotic stress, and during infection of maize plants.
OBJECTIVE Plant cell enlargement is unambiguously coupled to changes in cell wall architecture, and as such various studies have examined the modification of the proportions and structures of glucuronoarabinoxylan and mixed-linkage glucan in the course of cell elongation in grasses. However, there
With the exception of cellulose and callose, the cell wall polysaccharides are synthesized in Golgi membranes, packaged into vesicles, and exported to the plasma membrane where they are integrated into the microfibrillar structure. Consistent with this paradigm, several published reports have shown
In plants, pathogen defense is initiated by recognition of pathogen-associated molecular patterns (PAMPs) via plasma membrane-localized pattern-recognition receptors (PRRs). Fungal structural cell wall polymers such as branched β-glucans are essential for infection structure rigidity and

Auxin-enhanced glucan autohydrolysis in maize coleoptile cell walls.

只有註冊用戶可以翻譯文章
登陸註冊
Cell walls isolated from auxin-pretreated maize (Zea mays L.) coleoptile segments were assayed to disclose evidence for the existence of enhanced autolysis. To improve the sensitivity of the measurements and to facilitate kinetic analysis, isolated cell walls were consolidated within a small column,
Membranes of the Golgi apparatus from maize (Zea mays L.) were used to synthesize in vitro the (1-->3), (1-->4)-beta-D-glucan (MG) that is unique to the cell wall of the Poaceae. The MG was about 250 kDa and was separated from a much larger (1-->3)-beta-D-glucan (callose) by gel-permeation
We examined the mechanism of synthesis in vitro of (1-->3), (1-->4)beta-D-glucan (beta-glucan), a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-linkages. The ratio of

Auxin controls Golgi-localized glucan synthetase activity in the maize mesocotyl.

只有註冊用戶可以翻譯文章
登陸註冊
Decapitation or red light irradiation (R) inhibited growth and Golgi-localized glucan synthetase (GS I) activity in the mesocotyl of intact maize (Zea mays L.) seedlings. Applied auxin (indole-3-acetic acid) prevented the effects of R and of decapitation on both growth and GS I. Auxin applied

A partial characterization of an autolytically solubilized cell wall glucan.

只有註冊用戶可以翻譯文章
登陸註冊
Incubation of purified cell wall fragments from corn (Zea mays) coleoptiles results in solubilization of some of the wall dry matter. The portion of the weight loss due to enzymatic autolysis is due mainly to solubilization of a glucan and, to a small extent, to liberation of free glucose. No other
The "bound auxin" of Zea mays, first described by Berger and Avery (Amer. J. Bot. 1944; 31: 199-203) has been purified and partially characterized. It is an indole-3-acetic acid-containing, high molecular weight, lipophilic cellulosicglucan. The indole-3-acetic acid is in ester linkage as evidenced
The release of soluble carbohydrates from isolated cell wall of maize (Zea mays L.) was investigated in the range of pH 1 to 8.5. The pH profile demonstrated two peaks, a broad peak at pH 6 due to enzymatic breakdown of beta-glucan to monosaccharides (wall autolysis) and a sharp peak at pH 2.5 due
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge