中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

glycan/oryza sativa

鏈接已保存到剪貼板
文章臨床試驗專利權
頁 1 從 27 結果
N-glycosylation is a major modification of glycoproteins in eukaryotic cells. In Arabidopsis, great progress has been made in functional analysis of N-glycan production, however there are few studies in monocotyledons. Here, we characterized a rice (Oryza sativa L.) osmogs mutant with shortened
To explore the physiological significance of N-glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N-acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N-glycan maturation and accumulated high-mannose
In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of

N-glycan transition of the early developmental stage in Oryza sativa.

只有註冊用戶可以翻譯文章
登陸註冊
N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed
Silver nanomaterials have been mainly developed as antibacterial healthcare products worldwide, because of their antibacterial activity. However, there is little data regarding the potential risks and effects of large amounts of silver nanomaterials on plants. In contrast, N-glycans play important
All fundamental information such as signal transduction, metabolic control, infection, cell-to-cell signaling, and cell differentiation related to the growth of plants are preserved in germs. In preserving these information, glycans have a key role and are involved in the development and
Cellulose synthase genes (CesAs) encode a broad range of processive glycosyltransferases that synthesize (1-->4)beta-D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four 'U-motifs' with conserved aspartate residues and a QxxRW
We report the cloning of a glycoside hydrolase family (GHF) 9 gene of rice (Oryza sativa L. cv. Sasanishiki), OsCel9A, corresponding to the auxin-induced 51 kDa endo-1,4-beta-glucanase (EGase). This enzyme reveals a broad substrate specificity with respect to sugar backbones (glucose and xylose) in
Seed germination rates and plant development and growth under abiotic stress are important aspects of crop productivity. Here, our characterization of the rice (Oryza sativa L.) mutant reduced culm number11 (rcn11) showed that RCN11 controls growth of plants exposed to abnormal temperature, salinity
Human alpha-antitrypsin (AAT) is the most abundant circulating protease inhibitor in the human plasma. It is produced in the liver and exerts a primary physiological role as inhibitor for the neutrophil elastase in the lung. Individuals with one or several gene mutations in AAT causing reduction of
Molecular cloning of the "old" but still unclassified Euonymus europaeus agglutinin (EEA) demonstrated that the lectin is a homodimeric protein composed of 152 residue subunits. Analysis of the deduced sequence indicated that EEA is synthesized without a signal peptide and undergoes no
In the root of rice (Oryza sativa), abscisic acid (ABA) treatment, salinity, or water deficit stress induces the expression of a family of four genes, REPETITIVE PROLINE-RICH PROTEIN (RePRP). These genes encode two subclasses of novel proline-rich glycoproteins with highly repetitive PX₁PX₂ motifs,
The seed storage protein [beta]-phaseolin of the common bean (Phaseolus vulgaris L.) was expressed in the endosperm of transgenic rice (Oryza sativa L.) plants. The 5.1- or 1.8-kb promoter fragment of the rice seed storage protein glutelin Gt1 gene was fused transcriptionally to either the genomic
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge