頁 1 從 161 結果
Each plant genome contains a repertoire of β-mannanase genes belonging to glycoside hydrolase family 5 subfamily 7 (GH5_7), putatively involved in the degradation and modification of various plant mannan polysaccharides, but very few have been characterized at the gene product level. The current
The discovery of sulfated flavonoids in plants suggests that sulfation may play a regulatory role in the physiological functions of flavonoids. Sulfation of flavonoids is mediated by cytosolic sulfotransferases (SULTs), which utilize 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as the sulfate donor.
Phenolic glycosides are effective reactive oxygen scavengers and peroxidase substrates, suggesting that compounds in addition to ascorbate may have functional importance in defence responses against ozone (O(3)), especially in the leaf apoplast. The apoplastic concentrations of ascorbic acid (AA)
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both
Catalysing the hydrolysis of terminal beta-galactosyl residues from carbohydrates, galactolipids, and glycoproteins, glycoside hydrolase family 35 (beta-galactosidases; BGALs) are widely distributed in plants and believed to play many key roles, including modification of cell wall components.
In plants, Glycoside Hydrolase (GH) Family 1 beta -glycosidases are believed to play important roles in many diverse processes including chemical defense against herbivory, lignification, hydrolysis of cell wall-derived oligosaccharides during germination, and control of active phytohormone levels.
The flavonol branch of flavonoid biosynthesis is under transcriptional control of the R2R3-MYBs production of flavonol glycoside1 (PFG1/MYB12, PFG2/MYB11 and PFG3/MYB111) in Arabidopsis thaliana. Here, we investigated the influence of specific PFG transcription factors on flavonol distribution in
N-glycosylated proteins were isolated from Arabidopsis thaliana mature stems using affinity chromatography on Concanavalin A Sepharose, separated by 2D-electrophoresis and identified using nanoHPLC-MS/MS and MALDI-TOF MS. 102 glycoproteins were identified. 94% of these proteins were predicted by
Information gains from the seed of the model plant Arabidopsis thaliana (Brassicaceae) have greatly contributed to a better understanding of flavonoid synthesis and may be used for crop improvement. However, exhaustive identification of the flavonoid accumulated in Arabidopsis seed was still
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it
Techniques for in situ localization of gene products provide indispensable information for understanding biological function. In the case of enzymes, biological function is directly related to activity, and therefore, knowledge of activity patterns is central to understanding the molecular controls
2-C-Methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) is an intermediate of the plastid-localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co-factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds-3
An understanding of the balance between carbon and nitrogen assimilation in plants is key to future bioengineering for a range of applications. Metabolomic analysis of the model plant, Arabidopsis thaliana, using combined NMR-MS revealed the presence of two hemiterpenoid glycosides that accumulated
In higher plants, beta-glucosidases belonging to glycoside hydrolase (GH) Family 1 have been implicated in several fundamental processes including lignification. Phylogenetic analysis of Arabidopsis thaliana GH Family 1 has revealed that At1g61810 (BGLU45), At1g61820 (BGLU46), and At4g21760 (BGLU47)
Weakly bound cell wall proteins of Arabidopsis thaliana were identified using a proteomic and bioinformatic approach. An efficient protocol of extraction based on vacuum-infiltration of the tissues was developed. Several salts and a chelating agent were compared for their ability to extract cell