中文(繁體)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

hyperoxia/stroke

鏈接已保存到剪貼板
頁 1 從 173 結果
BACKGROUND In ischemic stroke, blood-brain barrier (BBB) regulations, typically involving matrix metalloproteinases (MMPs) and inhibitors (TIMPs) as mediators, became interesting since tissue plasminogen activator (tPA)-related BBB breakdown with risk of secondary hemorrhage was considered to

T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic stroke.

只有註冊用戶可以翻譯文章
登陸註冊
OBJECTIVE We describe the first clinical application of transient hyperoxia ("oxygen challenge") during T2*-weighted magnetic resonance imaging (MRI), to detect differences in vascular deoxyhemoglobin between tissue compartments following stroke. METHODS Subjects with acute ischemic stroke were

Advances in Normobaric Hyperoxia Brain Protection in Experimental Stroke.

只有註冊用戶可以翻譯文章
登陸註冊
As we all know that stroke is still a leading cause of death and acquired disability. Etiological treatment and brain protection are equally important. This review aimed to summarize the advance of normobaric-hyperoxia (NBHO) on brain protection in the setting of experimental stroke and brain

Endothelial dysfunction abrogates the efficacy of normobaric hyperoxia in stroke.

只有註冊用戶可以翻譯文章
登陸註冊
Hyperoxia has been uniformly efficacious in experimental focal cerebral ischemia. However, pilot clinical trials have showed mixed results slowing its translation in patient care. To explain the discordance between experimental and clinical outcomes, we tested the impact of endothelial dysfunction,

Normobaric hyperoxia and delayed tPA treatment in a rat embolic stroke model.

只有註冊用戶可以翻譯文章
登陸註冊
In a rat embolic stroke (eMCAO) model, the effects of 100% normobaric hyperoxia (NBO) with delayed recombinant tissue plasminogen activator (tPA) administration on ischemic lesion size and safety were assessed by diffusion- and perfusion (PWI)-weighted magnetic resonance imaging. NBO or room air
Cerebral ischemia interrupts oxygen supply to the affected tissues. Our previous studies have reported that normobaric hyperoxia (NBO) can maintain interstitial partial pressure of oxygen (pO2) in the penumbra of ischemic stroke rats at the physiological level, thus affording significant
This study aimed to assess the effect of acute hyperoxia on cerebral and systemic heamodynamics and the plasma concentration of prostacyclin and thromboxane in patients with stroke. Mean blood flow velocity (MBFV), pulsatility and resistance indices of the middle cerebral artery using transcranial
BACKGROUND Hyperbaric oxygen therapy is considered an important stroke treatment strategy. BACKGROUND To determine whether normobaric oxygen is neuroprotective, and, if so, what the therapeutic time window is. METHODS Experiment 1-Serial diffusion- and perfusion-weighted MRI (DWI and PWI) was

Normobaric hyperoxia therapy for traumatic brain injury and stroke: a review.

只有註冊用戶可以翻譯文章
登陸註冊
Traumatic brain injury (TBI) and acute ischaemic stroke are major causes of mortality and morbidity and there is an urgent demand for new neuroprotective strategies following the translational failure of neuroprotective drug trials. Oxygen therapy--especially normobaric, may offer a simple and
The main goal in the treatment of acute ischemic stroke is prompt arterial recanalization. Thrombolysis with recombinant tissue plasminogen activator (rtPA) is efficient in humans, but shows significant problems including slow and incomplete recanalization and frequent bleeding complications.

Normobaric hyperoxia-based neuroprotective therapies in ischemic stroke.

只有註冊用戶可以翻譯文章
登陸註冊
Stroke is a leading cause of death and disability due to disturbance of blood supply to the brain. As brain is highly sensitive to hypoxia, insufficient oxygen supply is a critical event contributing to ischemic brain injury. Normobaric hyperoxia (NBO) that aims to enhance oxygen delivery to hypoxic

Neuroprotection caused by hyperoxia preconditioning in animal stroke models.

只有註冊用戶可以翻譯文章
登陸註冊
Ischemic tolerance induced by hyperoxia (HO) can protect against brain injury and neurodegenerative diseases. Although multiple studies demonstrate neuroprotection by HO, the exact mechanism(s) of HO neuroprotection has not been elucidated. Here, I first review related mechanisms of brain ischemia
Normobaric hyperoxia (NBO) has been shown to be neuro- and vaso-protective during ischemic stroke. However, the underlying mechanisms remain to be fully elucidated. Activation of NADPH oxidase critically contributes to ischemic brain damage via increase in ROS production. We herein tested the
Stroke, one of the most debilitating cerebrovascular and nuerological diseases, is a serious life-threatening condition and a leading cause of long-term adult disability and brain damage, either directly or by secondary complications. Most effective treatments for stroke are time dependent such as
Oxygen therapy might increase damaged tissue oxygenation, turn on the aerobic pathway, and save neurons from death and could improve clinical outcome of the patients with stroke and head trauma. Hyperbaric oxygen therapy is accompanied by some unfavorable effects. Results of normobaric oxygen
加入我們的臉書專頁

科學支持的最完整的草藥數據庫

  • 支持55種語言
  • 科學支持的草藥療法
  • 通過圖像識別草藥
  • 交互式GPS地圖-在位置標記草藥(即將推出)
  • 閱讀與您的搜索相關的科學出版物
  • 通過藥效搜索藥草
  • 組織您的興趣並及時了解新聞研究,臨床試驗和專利

輸入症狀或疾病,並閱讀可能有用的草藥,輸入草藥並查看其所針對的疾病和症狀。
*所有信息均基於已發表的科學研究

Google Play badgeApp Store badge